Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples

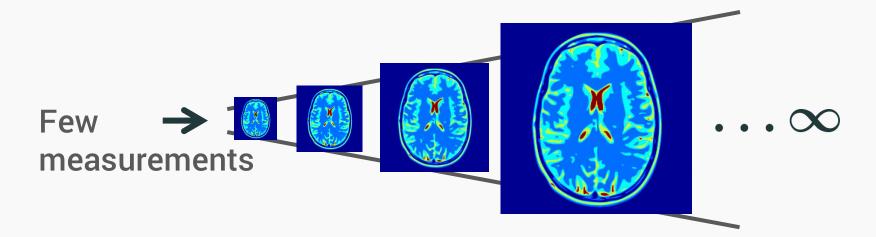
Greg Ongie

PhD Candidate

Department of Applied Math and Computational Sciences University of Iowa

April 25, 2016 U. Michigan, CSP Seminar

Our goal is to develop theory and algorithms for compressive off-the-grid imaging

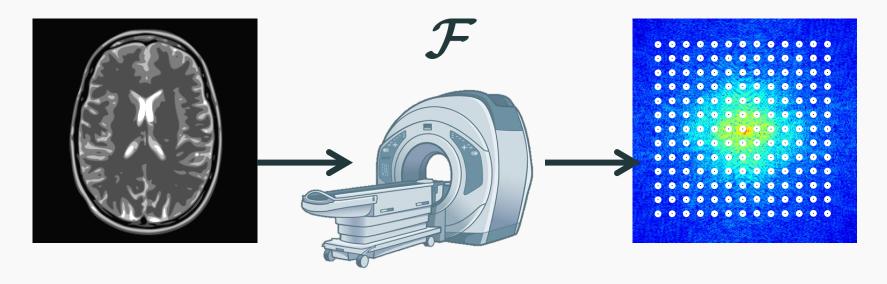


Off-the-grid = Continuous domain representation

Compressive off-the-grid imaging:

Exploit continuous domain modeling to improve image recovery from few measurements

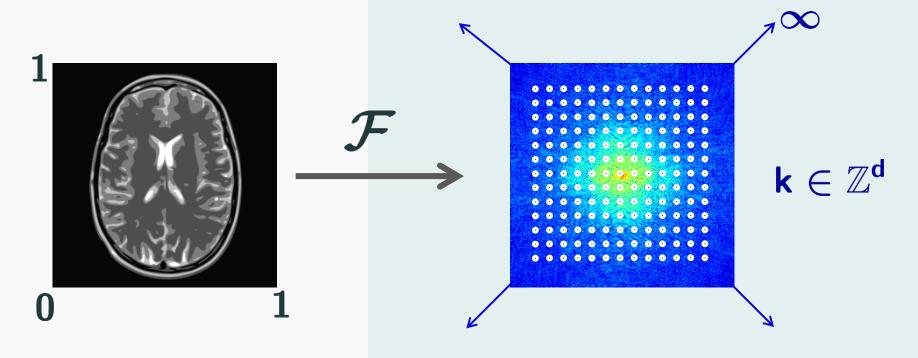
Motivation: MRI Reconstruction



Main Problem:

Reconstruct image from Fourier domain samples

Related: Computed Tomography, Florescence Microscopy

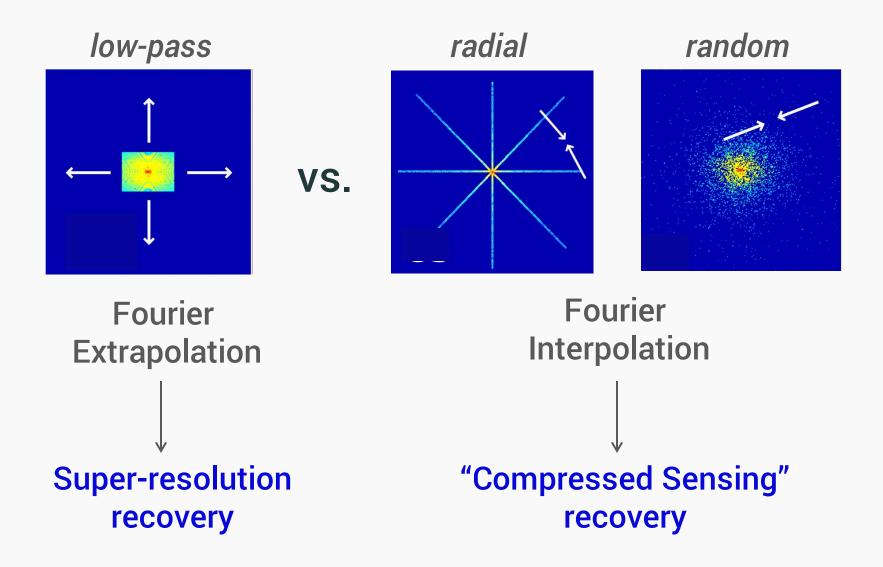


$$f(x), \ x \in [0,1]^d$$

$$\widehat{\mathbf{f}}[\mathbf{k}] := \int_{[0,1]^d} \mathbf{f}(\mathbf{x}) e^{-j2\pi \mathbf{k} \cdot \mathbf{x}} d\mathbf{x}$$

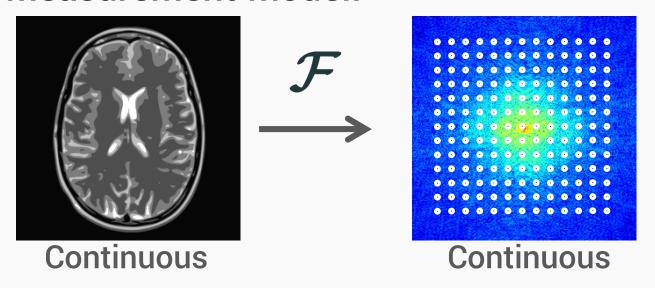
Uniform Fourier Samples = Fourier Series Coefficients

Types of "Compressive" Fourier Domain Sampling

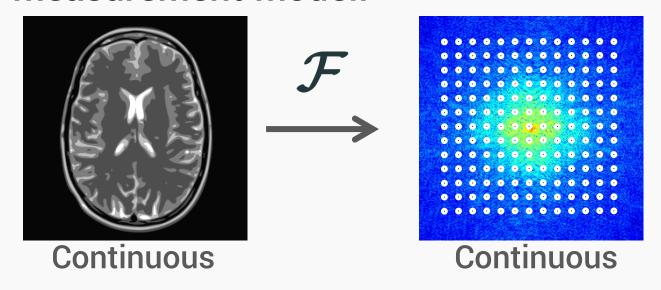


CURRENT DISCRETE PARADIGM

"True" measurement model:

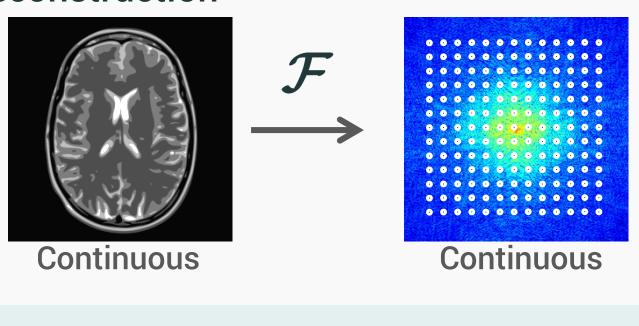


"True" measurement model:

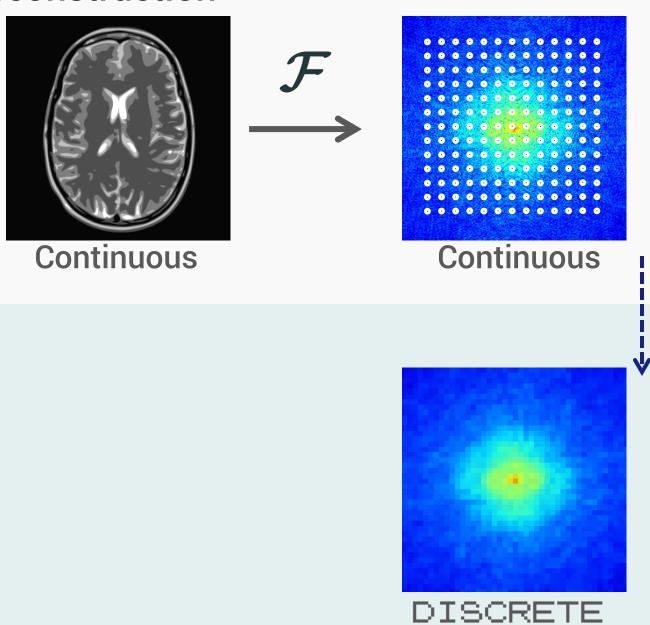


Approximated measurement model:

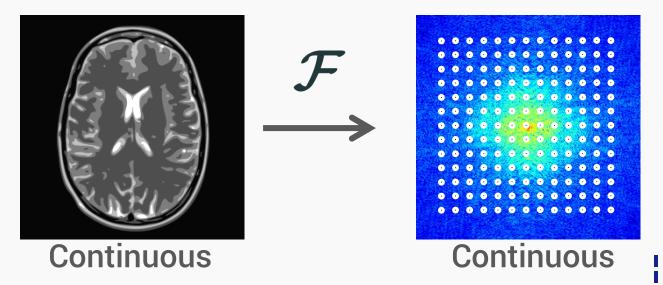
DFT Reconstruction

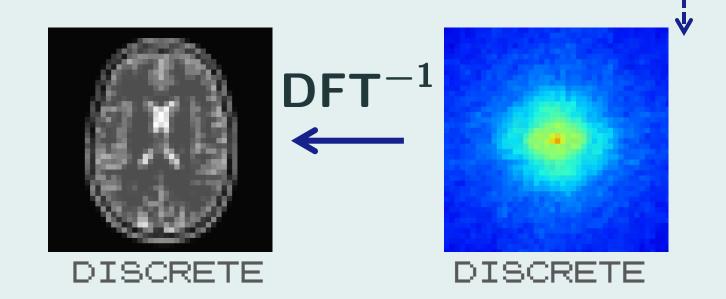


DFT Reconstruction

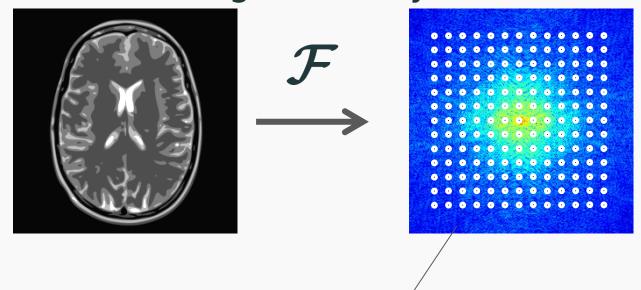


DFT Reconstruction



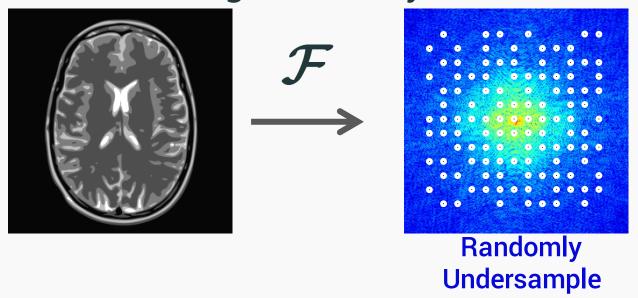


"Compressed Sensing" Recovery

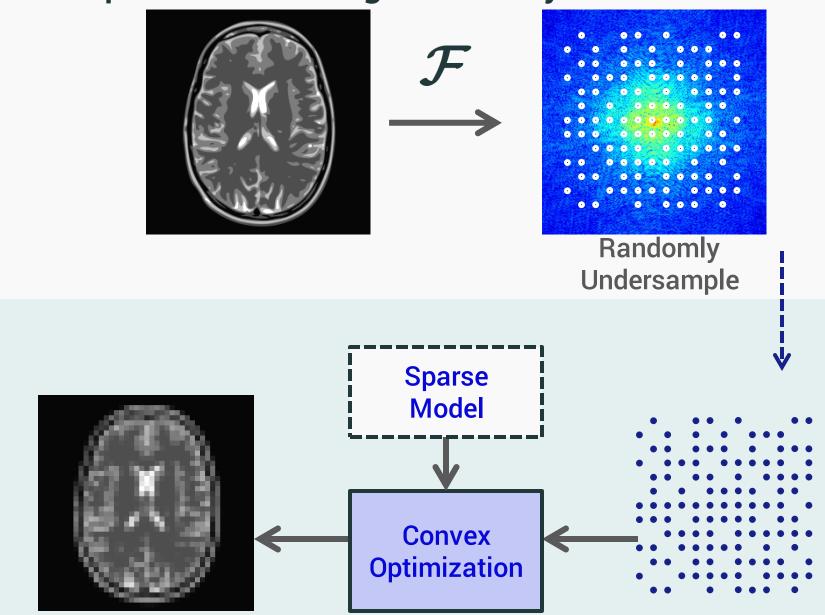


Full sampling is costly! (or impossible—e.g. Dynamic MRI)

"Compressed Sensing" Recovery



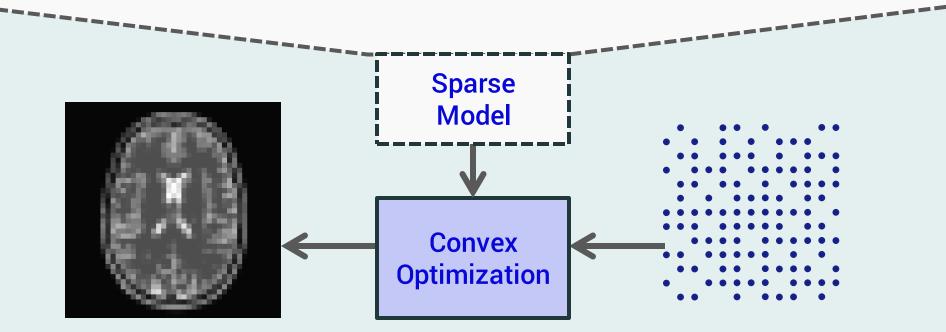
"Compressed Sensing" Recovery



Example:

Assume discrete gradient of image is sparse

Piecewise constant model



TV semi-norm:
$$\|\mathbf{g}\|_{\text{TV}} = \sum_{i,j} \sqrt{|\mathbf{g}_{i+1,j} - \mathbf{g}_{i,j}|^2 + |\mathbf{g}_{i,j+1} - \mathbf{g}_{i,j}|^2}$$

i.e., L1-norm of discrete gradient magnitude

TV semi-norm:
$$\|\mathbf{g}\|_{\text{TV}} = \sum_{i,j} \sqrt{|\mathbf{g}_{i+1,j} - \mathbf{g}_{i,j}|^2 + |\mathbf{g}_{i,j+1} - \mathbf{g}_{i,j}|^2}$$

i.e., L1-norm of discrete gradient magnitude

TV semi-norm:
$$\|\mathbf{g}\|_{\text{TV}} = \sum_{\mathbf{i},\mathbf{j}} \sqrt{|\mathbf{g}_{\mathbf{i}+1,\mathbf{j}} - \mathbf{g}_{\mathbf{i},\mathbf{j}}|^2 + |\mathbf{g}_{\mathbf{i},\mathbf{j}+1} - \mathbf{g}_{\mathbf{i},\mathbf{j}}|^2}$$

i.e., L1-norm of discrete gradient magnitude

TV semi-norm:
$$\|\mathbf{g}\|_{\text{TV}} = \sum_{i,j} \sqrt{|\mathbf{g}_{i+1,j} - \mathbf{g}_{i,j}|^2 + |\mathbf{g}_{i,j+1} - \mathbf{g}_{i,j}|^2}$$

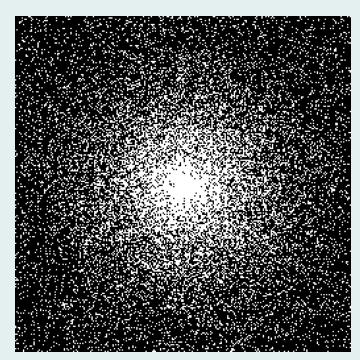
i.e., L1-norm of discrete gradient magnitude

Convex optimization problem
Fast iterative algorithms:

ADMM/Split-Bregman,
FISTA, Primal-Dual, etc.

Restricted DFT
$$\Omega = 0.000$$
 Sample locations

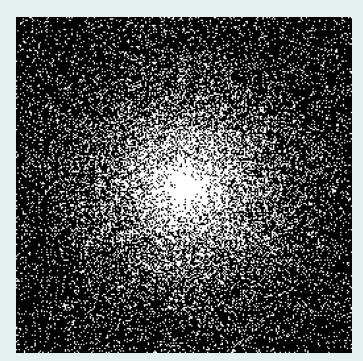
Example:



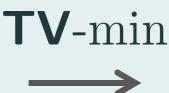
25% Random Fourier samples (variable density)

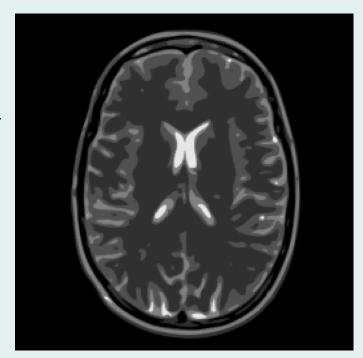
Rel. Error = 30%

Example:



25% Random Fourier samples (variable density)



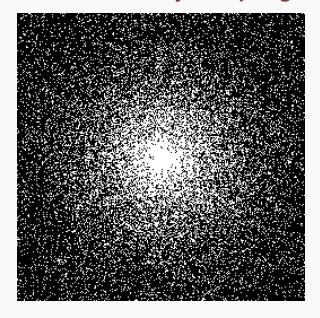


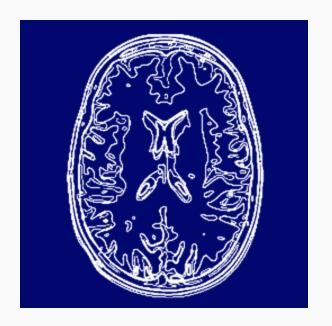
Rel. Error = 5%

Theorem [Krahmer & Ward, 2012]:

If $f \in \mathbb{C}^{N \times N}$ has **s**-sparse gradient, then **f** is the unique solution to (**TV**-min) with high probability provided the number of random* Fourier samples **m** satisfies $m \gtrsim s \log^3(s) \log^5(N)$

* Variable density sampling



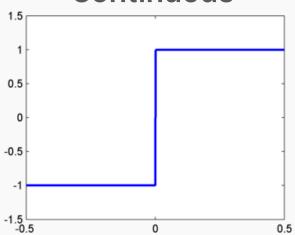


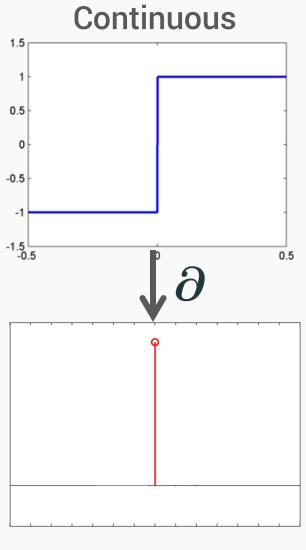
Summary of DISCRETE PARADIGM

- Approximate $\mathcal{F} o \mathsf{DFT}$
- Fully sampled: Fast reconstruction by $\ensuremath{\mathsf{DFT}^{-1}}$
- Under-sampled (Compressed sensing): Exploit sparse models & convex optimization
 - E.g. TV-minimization
 - Recovery guarantees

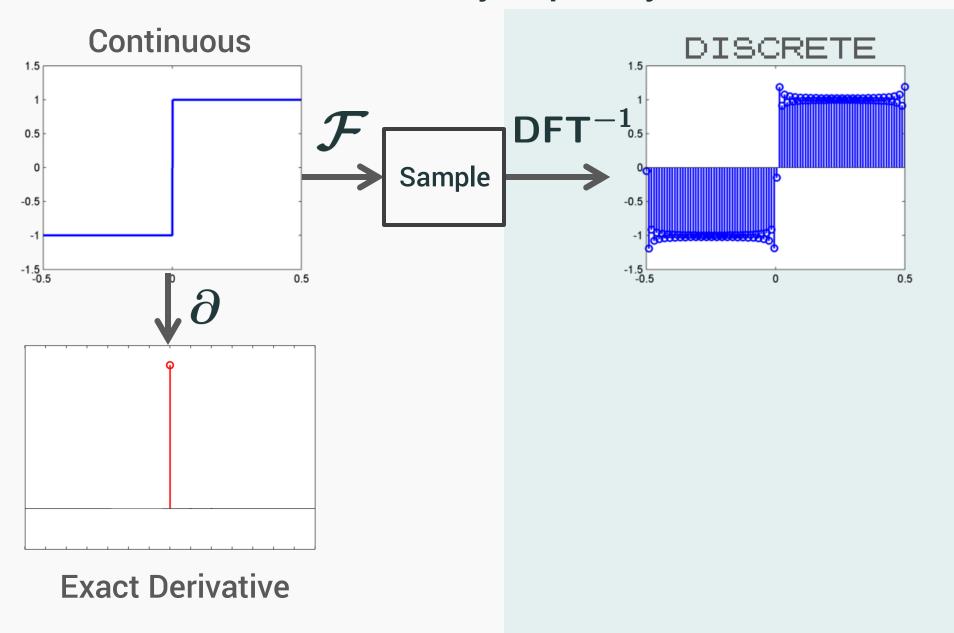
Summary of DISCRETE PARADIGM

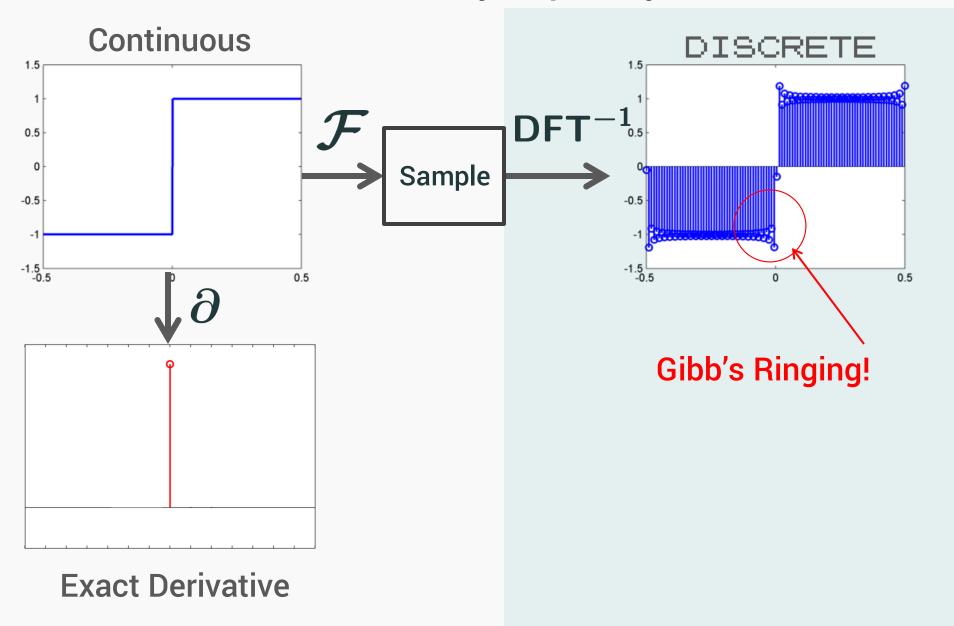
- Approximate ${\cal F} o {\sf DFT}$
- Fully sampled: Fast reconstruction by $\ensuremath{\mathsf{DFT}^{-1}}$
- Under-sampled (Compressed sensing): Exploit sparse models & convex optimization
 - E.g. TV-minimization
 - Recovery guarantees

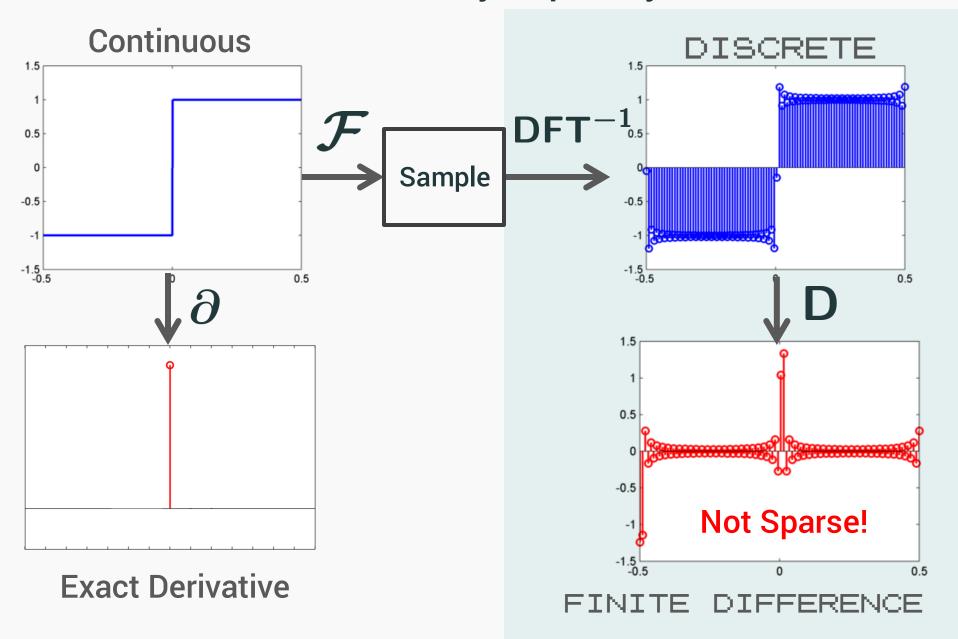




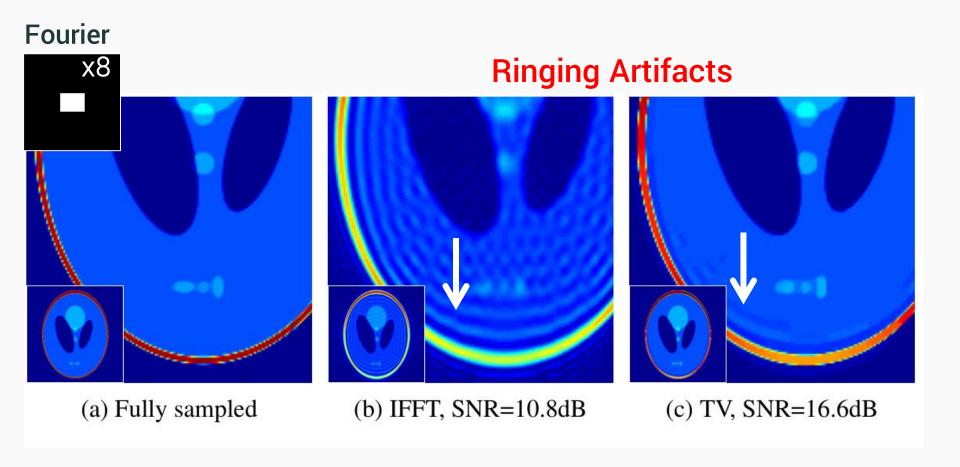
Exact Derivative







Consequence: TV fails in super-resolution setting



Can we move beyond the DISCRETE PARADIGM in Compressive Imaging?

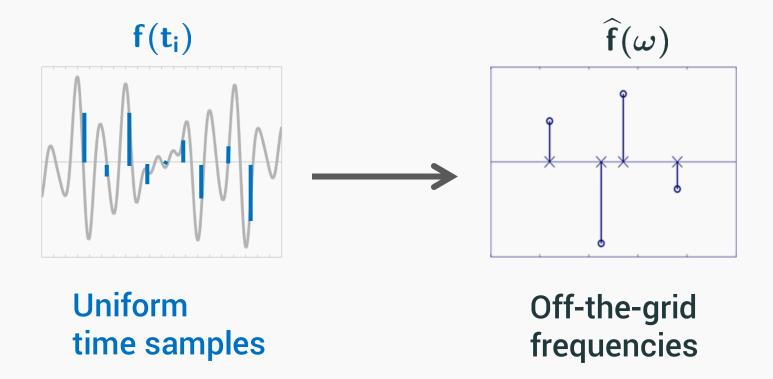
Challenges:

• Continuous domain sparsity \neq Discrete domain sparsity

- What are the continuous domain analogs of sparsity?
- Can we pose recovery as a convex optimization problem?
- Can we give recovery guarantees, a la TV-minimization?

New Off-the-Grid **Imaging** Framework: Theory

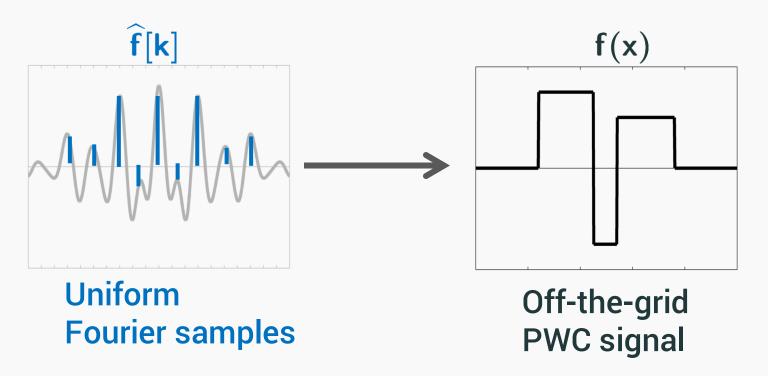
Classical Off-the-Grid Method: Prony (1795)



Robust variants:

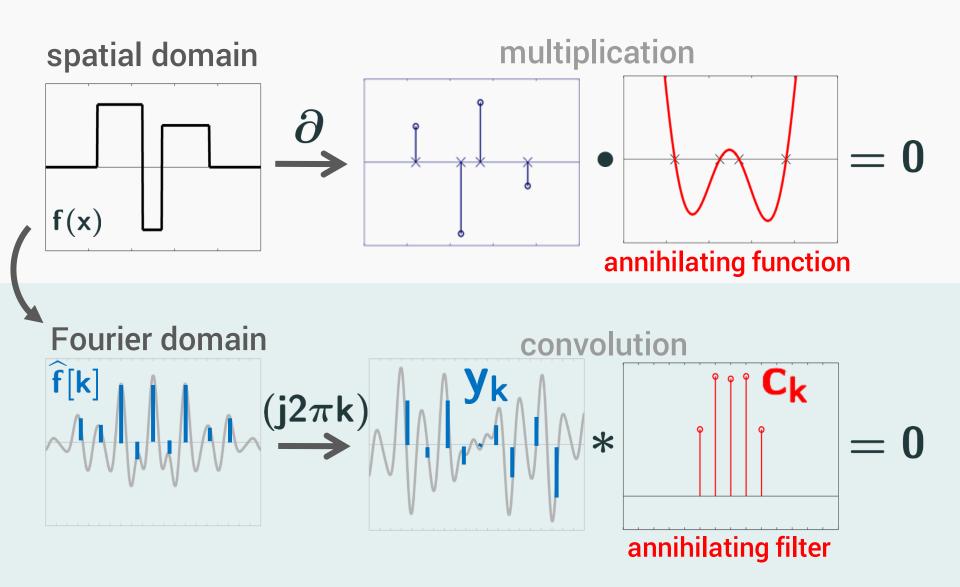
Pisarenko (1973), MUSIC (1986), ESPRIT (1989), Matrix pencil (1990) . . . Atomic norm (2011)

Main inspiration: Finite-Rate-of-Innovation (FRI) [Vetterli et al., 2002]



Recent extension to 2-D images:

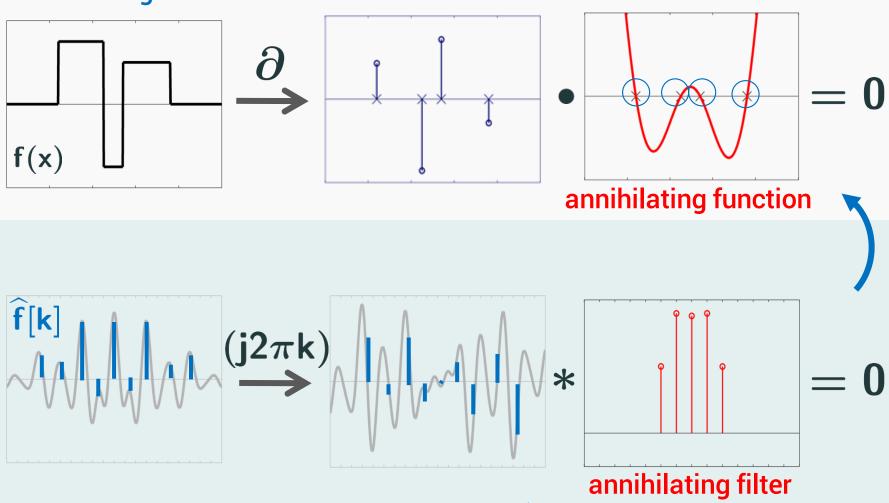
Pan, Blu, & Dragotti (2014), "Sampling Curves with FRI".



Annihilation Relation: $\sum_{\mathbf{k}} \mathbf{y}_{\ell-\mathbf{k}} \mathbf{c}_{\mathbf{k}} = \mathbf{0}$

recover signal

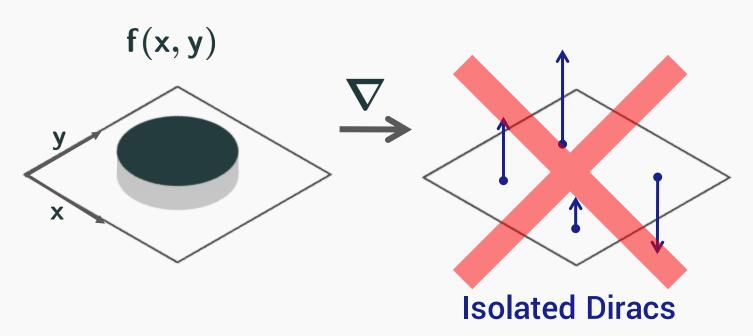
Stage 2: solve linear system for amplitudes



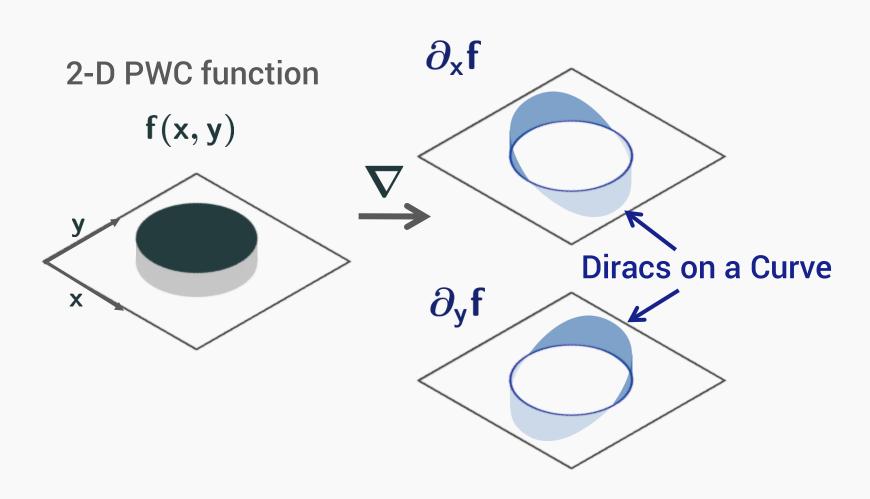
Stage 1: solve linear system for filter

Challenges extending FRI to higher dimensions: Singularities not isolated

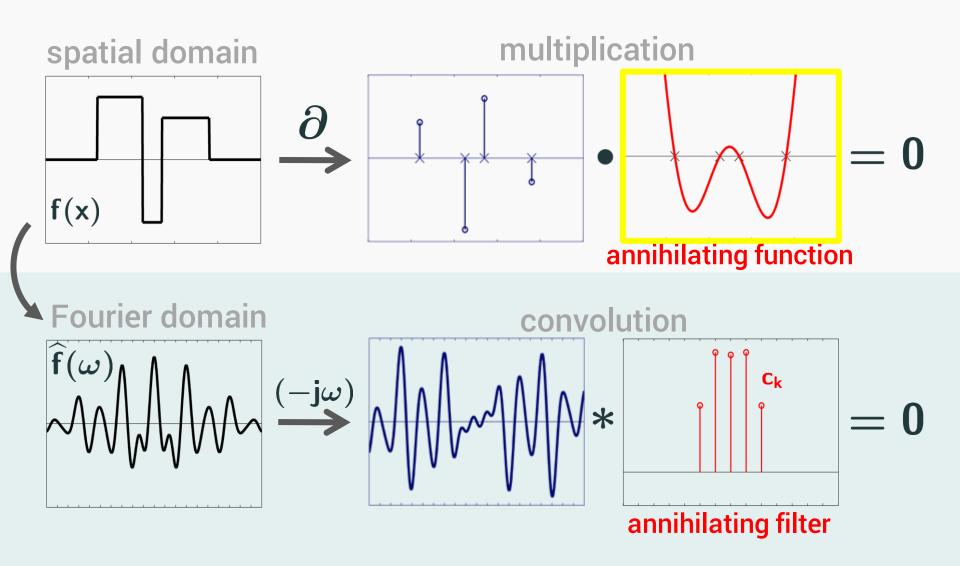
2-D PWC function



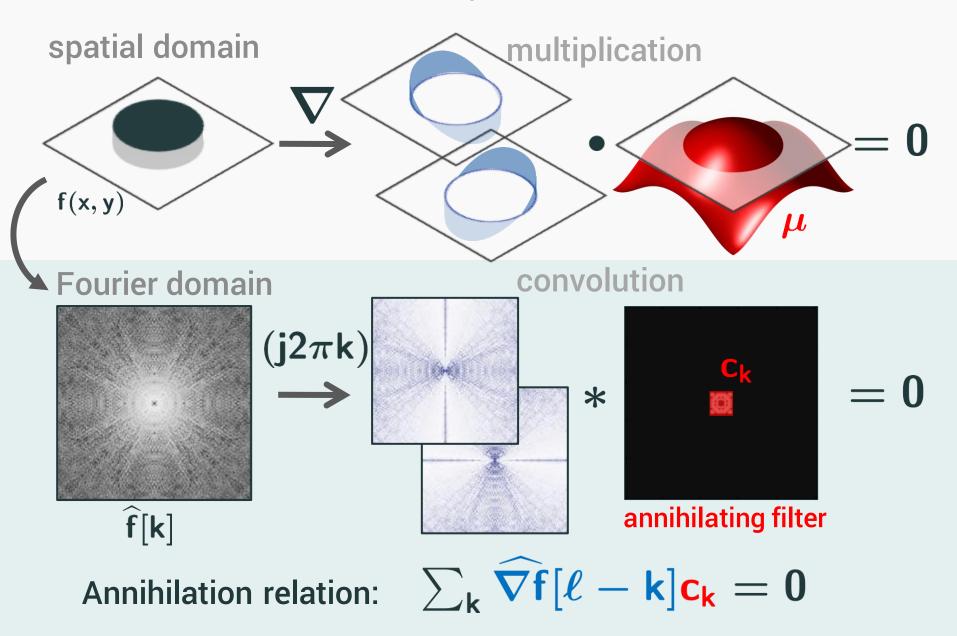
Challenges extending FRI to higher dimensions: Singularities not isolated



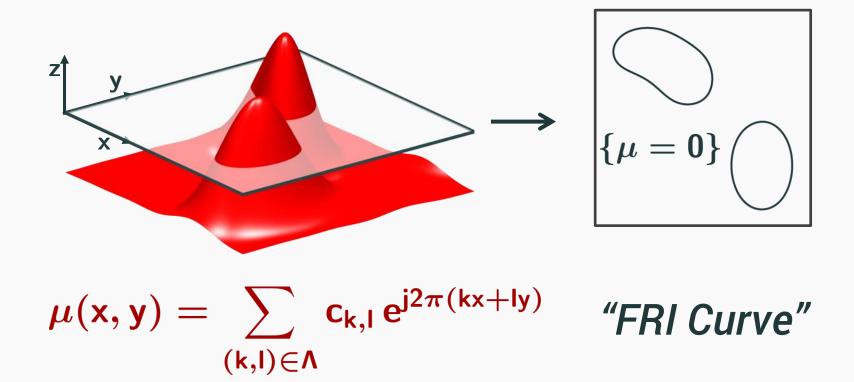
Recall 1-D Case...



2-D PWC functions satisfy an annihilation relation

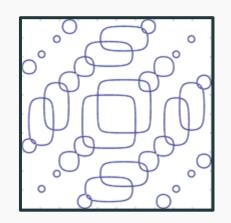


Can recover edge set when it is the zero-set of a 2-D trigonometric polynomial [Pan et al., 2014]



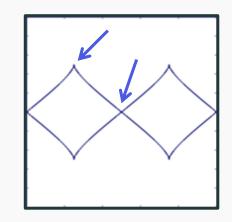
FRI curves can represent complicated edge geometries with few coefficients

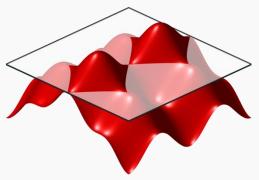
Multiple curves & intersections



13x13 coefficients

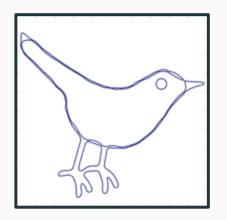
Non-smooth points

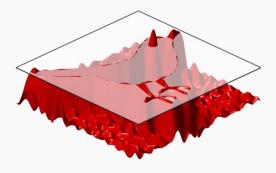




7x9 coefficients

Approximate arbitrary curves





25x25 coefficients

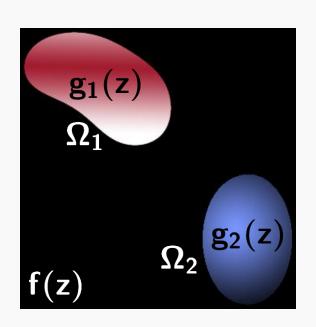
We give an improved theoretical framework for higher dimensional FRI recovery

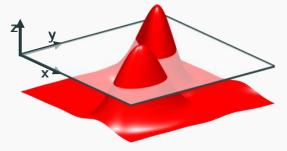
• [Pan et al., 2014] derived annihilation relation for piecewise complex analytic signal model

$$f(z) = \sum_{i=1}^N g_i(z) \cdot \mathbf{1}_{\Omega_i}(z)$$

s.t. g_i analytic in Ω_i

- Not suitable for natural images
- 2-D only
- Recovery is ill-posed:
 Infinite DoF





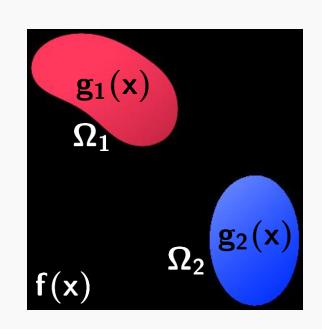
We give an improved theoretical framework for higher dimensional FRI recovery [O. & Jacob, SampTA 2015]

 Proposed model: piecewise smooth signals

$$f(\mathbf{x}) = \sum_{i=1}^{N} \mathbf{g}_i(\mathbf{x}) \cdot \mathbf{1}_{\Omega_i}(\mathbf{x})$$

s.t. g_i smooth in Ω_i

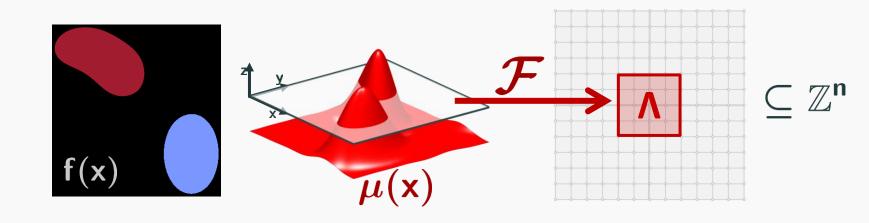
- Extends easily to n-D
- Provable sampling guarantees
- Fewer samples necessary for recovery



Annhilation relation for PWC signals

Prop: If f is PWC with edge set $\mathsf{E} \subseteq \{\mu = 0\}$ for μ bandlimited to Λ then

$$\sum_{\mathbf{k}\in\mathbf{\Lambda}}\widehat{\mu}[\mathbf{k}]\widehat{\partial \mathbf{f}}[\ell-\mathbf{k}]=\mathbf{0},\ \ \forall \ell\in\mathbb{Z}^{\mathbf{n}}$$
 any 1st order partial derivative



Annhilation relation for PWC signals

Prop: If f is PWC with edge set $\mathsf{E} \subseteq \{\mu = 0\}$ for μ bandlimited to Λ then

$$\sum_{\mathbf{k}\in\mathbf{\Lambda}}\widehat{\mu}[\mathbf{k}]\widehat{\partial \mathbf{f}}[\ell-\mathbf{k}]=\mathbf{0},\ \ \forall \ell\in\mathbb{Z}^{\mathbf{n}}$$
 any 1st order partial derivative

Proof idea:

Show $\mu \cdot \partial f = 0$ as tempered distributions Use convolution theorem

Distributional derivative of indicator function:

smooth test function

$$\langle \partial_{j} 1_{\Omega}, arphi
angle = -\langle 1_{\Omega}, \partial_{j} arphi
angle$$

$$= -\int_{\Omega} \partial_{j} arphi \, \mathrm{d} x$$
 divergence theorem
$$= -\oint_{\partial \Omega} arphi \, \mathrm{n}_{j} \, \mathrm{d} \sigma$$

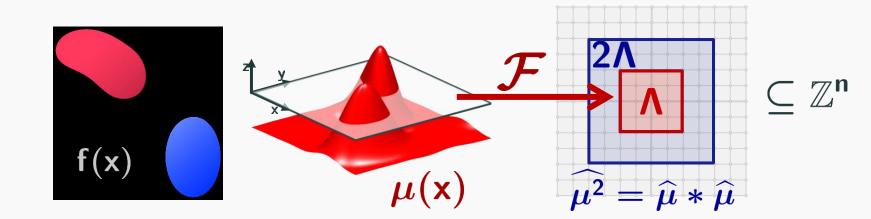
Weighted curve integral

Annhilation relation for PW linear signals

Prop: If **f** is PW linear, with edge set $\mathsf{E} \subseteq \{\mu = 0\}$ and μ bandlimited to Λ then

$$\sum_{\mathbf{k}\in\mathbf{2}\Lambda}\widehat{\mu^{2}}[\mathbf{k}]\widehat{\partial^{2}f}[\ell-\mathbf{k}]=\mathbf{0},\ \forall \ell\in\mathbb{Z}^{n}$$

any 2nd order partial derivative



Annhilation relation for PW linear signals

Prop: If **f** is PW linear, with edge set $\mathsf{E} \subseteq \{\mu = 0\}$ and μ bandlimited to Λ then

$$\sum_{\mathbf{k}\in\mathbf{2}\Lambda}\widehat{\mu^2}[\mathbf{k}]\widehat{\partial^2 f}[\ell-\mathbf{k}]=0,\ \forall \ell\in\mathbb{Z}^n$$

any 2nd order partial derivative

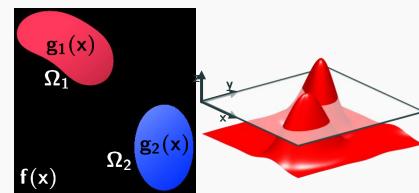
Proof idea:
$$f = g \cdot 1_{\Omega}$$
, g linear

product rule x2
$$\partial^2 f=\partial^2 g$$
 $1_\Omega+2\partial g\cdot\partial 1_\Omega+g\cdot\partial^2 1_\Omega$ annihilated by μ^2

$$f(\mathbf{x}) = \sum_{i=1}^N \mathbf{g}_i(\mathbf{x}) \cdot \mathbf{1}_{\Omega_i}(\mathbf{x})$$

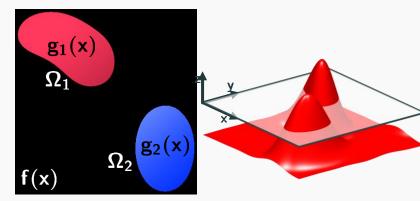
s.t.
$$\mathbf{Dg_i} = \mathbf{0} \text{ in } \Omega_i$$

Any constant coeff. differential operator



$$f(\textbf{x}) = \sum_{i=1}^{N} g_i(\textbf{x}) \cdot \mathbf{1}_{\Omega_i}(\textbf{x})$$

s.t.
$$\mathbf{D}\mathbf{g_i} = \mathbf{0} \text{ in } \mathbf{\Omega_i}$$



Signal Model: Choice of Diff. Op.:

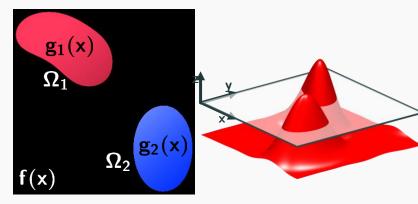
PW Constant $D = \nabla$

PW Analytic* $D = \partial_x + j\partial_y$

1st order

$$f(\textbf{x}) = \sum_{i=1}^{N} g_i(\textbf{x}) \cdot \mathbf{1}_{\Omega_i}(\textbf{x})$$

s.t.
$$\mathbf{Dg_i} = \mathbf{0}$$
 in Ω_i



Signal Model: Choice of Diff. Op.:
$$D = \nabla$$

$$D = \partial_x + j\partial_y$$

$$D = \Delta$$

$$D = \Delta$$

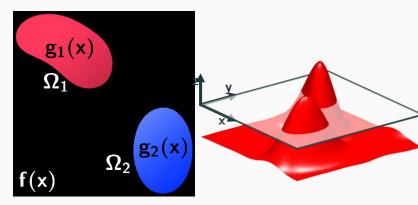
$$D = \{\partial_{xx}, \partial_{xy}, \partial_{yy}\}$$

$$D = \{\partial_{xx}, \partial_{xy}, \partial_{yy}\}$$

$$D = \{\partial_{xx}, \partial_{xy}, \partial_{yy}\}$$

$$f(\textbf{x}) = \sum_{i=1}^{N} g_i(\textbf{x}) \cdot \mathbf{1}_{\Omega_i}(\textbf{x})$$

s.t.
$$\mathbf{Dg_i} = \mathbf{0}$$
 in Ω_i



Signal Model: Choice of Diff. Op.:
$$D = \nabla$$

$$D = \partial_x + j\partial_y$$

$$D = \Delta$$

$$D = \Delta$$

$$D = \{\partial_{xx}, \partial_{xy}, \partial_{yy}\}$$

$$D = \{\partial^{\alpha}\}_{|\alpha| = n}$$

$$D = \{\partial^{\alpha}\}_{|\alpha| = n}$$

Sampling theorems:

Necessary and sufficient number of Fourier samples for

- 1. Unique recovery of edge set/annihilating polynomial
- 2. Unique recovery of full signal given edge set
 - Not possible for PW analytic, PW harmonic, etc.
 - Prefer PW polynomial models

→ Focus on 2-D PW constant signals

Challenges to proving uniqueness

1-D FRI Sampling Theorem [Vetterli et al., 2002]:

A continuous-time PWC signal with K jumps can be uniquely recovered from 2K+1 uniform Fourier samples.

Proof (a la Prony's Method):

Form Toeplitz matrix T from samples, use uniqueness of

Vandermonde decomposition: $T = VDV^H$

"Caratheodory Parametrization"

Challenges proving uniqueness, cont.

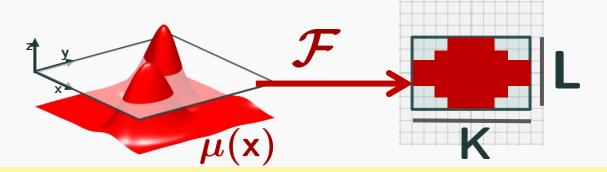
Extends to *n*-D if singularities isolated [Sidiropoulos, 2001]

Not true in our case--singularities supported on curves:

Requires new techniques:

- Spatial domain interpretation of annihilation relation
- Algebraic geometry of trigonometric polynomials

Minimal (Trigonometric) Polynomials Define $\deg(\mu)=({\sf K},{\sf L})$ to be the dimensions of the smallest rectangle containing the Fourier support of μ



Prop: Every zero-set of a trig. polynomial ${\bf C}$ with no isolated points has a *unique* real-valued trig. polynomial μ_0 of minimal degree such that if ${\bf C}=\{\mu=0\}$ then $\deg(\mu_0)\leq \deg(\mu)$ and $\mu=\gamma\cdot\mu_0$

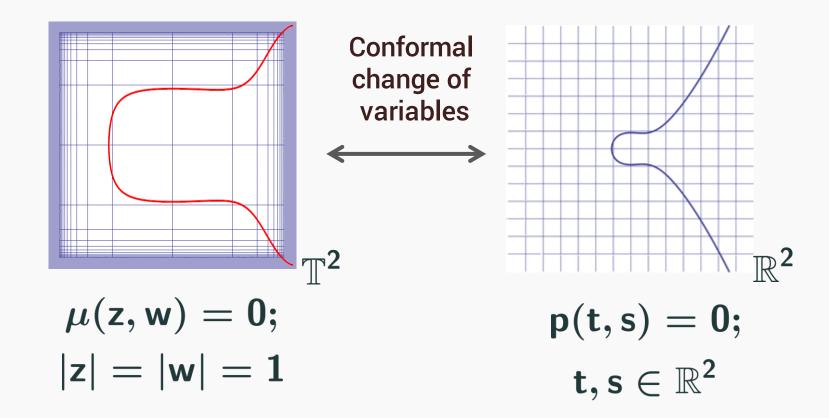
Degree of min. poly. = analog of sparsity/complexity of edge set

Proof idea: Pass to Real Algebraic Plane Curves

Zero-sets of trig polynomials of degree (K,L)

are in 1-to-1 correspondence with

Real algebraic plane curves of degree (K,L)



Uniqueness of edge set recovery

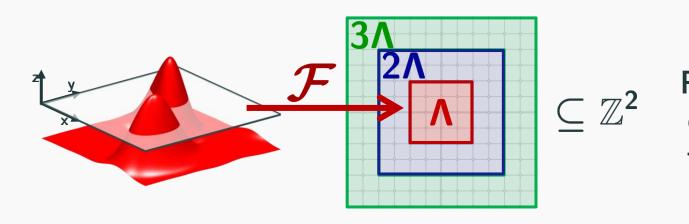
Theorem: If **f** is PWC* with edge set $\mathbf{E} = \{\mu = \mathbf{0}\}$

with μ minimal and bandlimited to Λ then

 $c=\widehat{\mu}$ is the unique solution to

$$\sum_{k\in\Lambda}c[k]\widehat{\nabla f}[\ell-k]=0 \text{ for all } \ell\in2\Lambda$$

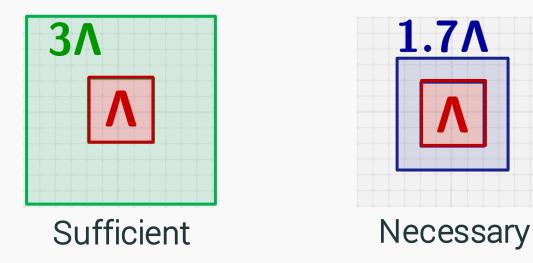
*Some geometric restrictions apply



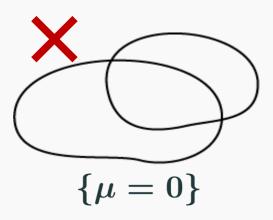
 $\subseteq \mathbb{Z}^2 \quad \begin{array}{l} \text{Requires samples} \\ \text{of } \widehat{f} \text{ in } 3 \Lambda \\ \text{to build equations} \end{array}$

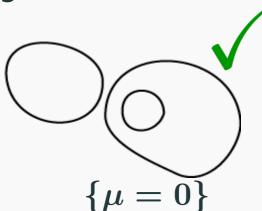
Current Limitations to Uniqueness Theorem

Gap between necessary and sufficient # of samples:



Restrictions on geometry of edge sets: non-intersecting





Uniqueness of signal (given edge set)

Theorem: If f is PWC* with edge set $\mathbf{E}=\{\mu=0\}$ with μ minimal and bandlimited to Λ then $\mathbf{g}=\mathbf{f}$ is the unique solution to

$$\mu \cdot \nabla \mathbf{g} = \mathbf{0}$$
 s.t. $\widehat{\mathbf{f}}[\mathbf{k}] = \widehat{\mathbf{g}}[\mathbf{k}], \mathbf{k} \in \Gamma$

when the sampling set $\Gamma \supseteq 3\Lambda$

*Some geometric restrictions apply

Uniqueness of signal (given edge set)

Theorem: If **f** is PWC* with edge set $\mathsf{E} = \{\mu = 0\}$

with μ minimal and bandlimited to Λ then

g = f is the unique solution to

$$\mu \cdot \nabla \mathbf{g} = \mathbf{0}$$
 s.t. $\widehat{\mathbf{f}}[\mathbf{k}] = \widehat{\mathbf{g}}[\mathbf{k}], \mathbf{k} \in \Gamma$

when the sampling set $\Gamma \supseteq 3\Lambda$

*Some geometric restrictions apply

Equivalently,

$$\mathbf{f} = \arg\min_{\mathbf{g}} \| \mu \cdot \nabla \mathbf{g} \| \text{ s.t. } \widehat{\mathbf{f}}[\mathbf{k}] = \widehat{\mathbf{g}}[\mathbf{k}], \mathbf{k} \in \Gamma$$

Summary of Proposed Off-the-Grid Framework

- Extend Prony/FRI methods to recover multidimensional singularities (curves, surfaces)
- Unique recovery from uniform Fourier samples: # of samples proportional to degree of edge set polynomial

- Two-stage recovery
 - 1. Recover edge set by solving linear system
 - 2. Recover amplitudes

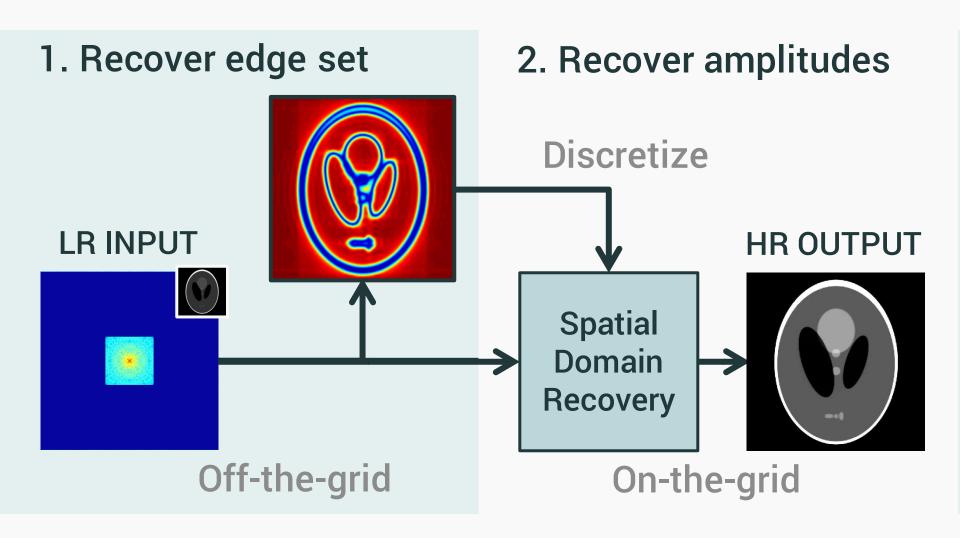
Summary of Proposed Off-the-Grid Framework

- Extend Prony/FRI methods to recover multidimensional singularities (curves, surfaces)
- Unique recovery from uniform Fourier samples: # of samples proportional to degree of edge set polynomial

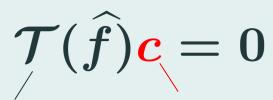
- Two-stage recovery
 - Recover edge set by solving linear system (Robust?)
 - 2. Recover amplitudes (How?)

New Off-the-Grid **Imaging** Framework: **Algorithms**

Two-stage Super-resolution MRI Using Off-the-Grid Piecewise Constant Signal Model [O. & Jacob, ISBI 2015]

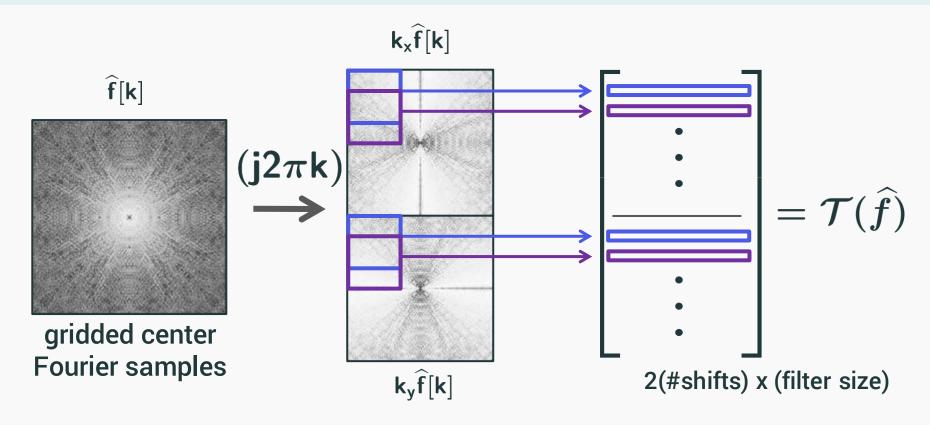


Matrix representation of annihilation



2-D convolution matrix (block Toeplitz)

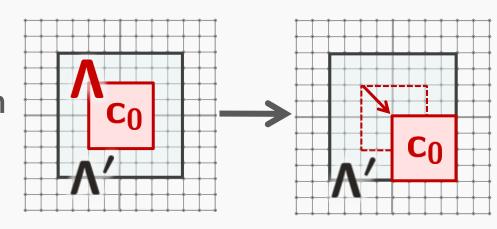
vector of filter coefficients



Basis of algorithms: Annihilation matrix is low-rank

Prop: If the level-set function is bandlimited to Λ and the assumed filter support $\Lambda' \supset \Lambda$ then $\operatorname{rank}[\mathcal{T}(\widehat{\mathbf{f}})] \leq |\Lambda'| - (\#\operatorname{shifts} \Lambda \text{ in } \Lambda')$

Fourier domain

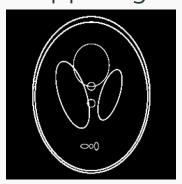


Spatial domain
$$\mu(\mathbf{x},\mathbf{y}) \longrightarrow \mathrm{e}^{\mathrm{j}2\pi(\mathbf{k}\mathbf{x}+\mathbf{l}\mathbf{y})}\mu(\mathbf{x},\mathbf{y})$$

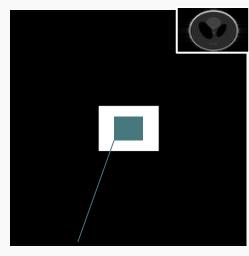
Basis of algorithms: Annihilation matrix is low-rank

Prop: If the level-set function is bandlimited to Λ and the assumed filter support $\Lambda' \supset \Lambda$ then $\operatorname{rank}[\mathcal{T}(\widehat{\mathbf{f}})] \leq |\Lambda'| - (\#\operatorname{shifts} \Lambda \text{ in } \Lambda')$

Example: Shepp-Logan

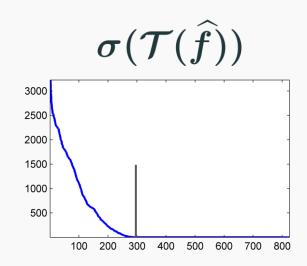


Fourier domain



Assumed filter: 33x25

Samples: 65x49



Rank ≈ 300

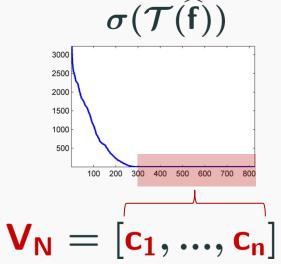
Stage 1: Robust annihilting filter estimation

1. Compute SVD

$$\mathcal{T}(\widehat{f}) = U\Sigma V^H$$

2. Identify null space

$$V = [V_S V_N],$$



3. Compute sum-of-squares average

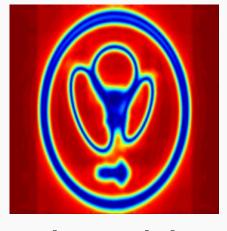
$$\mu = |\mathcal{F}^{-1}\mathbf{c_1}|^2 + |\mathcal{F}^{-1}\mathbf{c_2}|^2 + \dots + |\mathcal{F}^{-1}\mathbf{c_n}|^2$$

Recover common zeros

Stage 2: Weighted TV Recovery

$$\mathbf{f} = \arg\min_{\mathbf{g}} \| \mu \cdot \nabla \mathbf{g} \|_1 \ \mathrm{s.t.} \ \widehat{\mathbf{f}}[\mathbf{k}] = \widehat{\mathbf{g}}[\mathbf{k}], \mathbf{k} \in \mathbf{\Gamma}$$

$$\min_{x} \sum_{i} w_{i} \cdot |(Dx)_{i}| + \lambda \|Ax - b\|^{2}$$



Edge weights

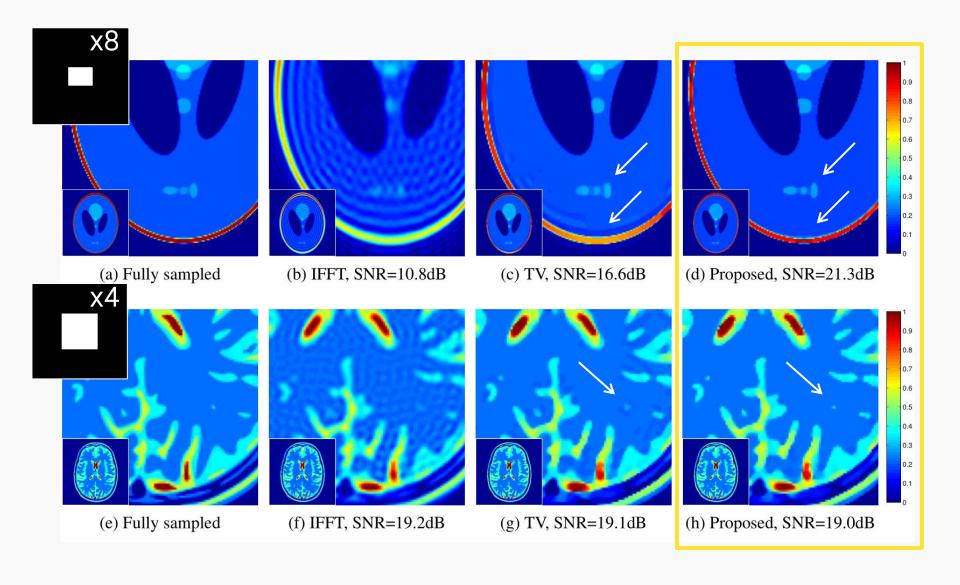
x = discrete spatial domain image

D = discrete gradient

A = Fourier undersampling operator

b = k-space samples

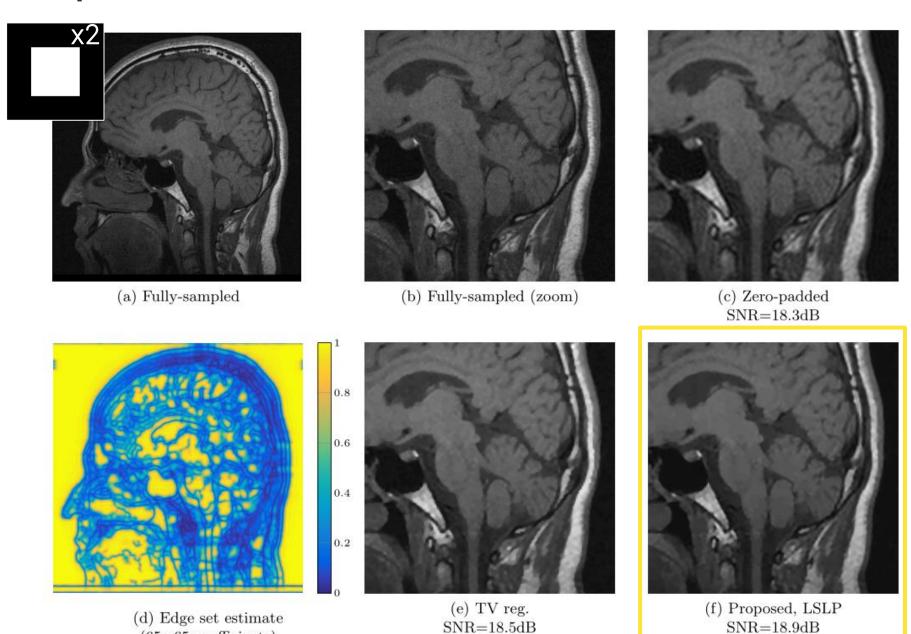
Super-resolution of MRI Medical Phantoms



Analytical phantoms from [Guerquin-Kern, 2012]

Super-resolution of Real MRI Data

 $(65 \times 65 \text{ coefficients})$



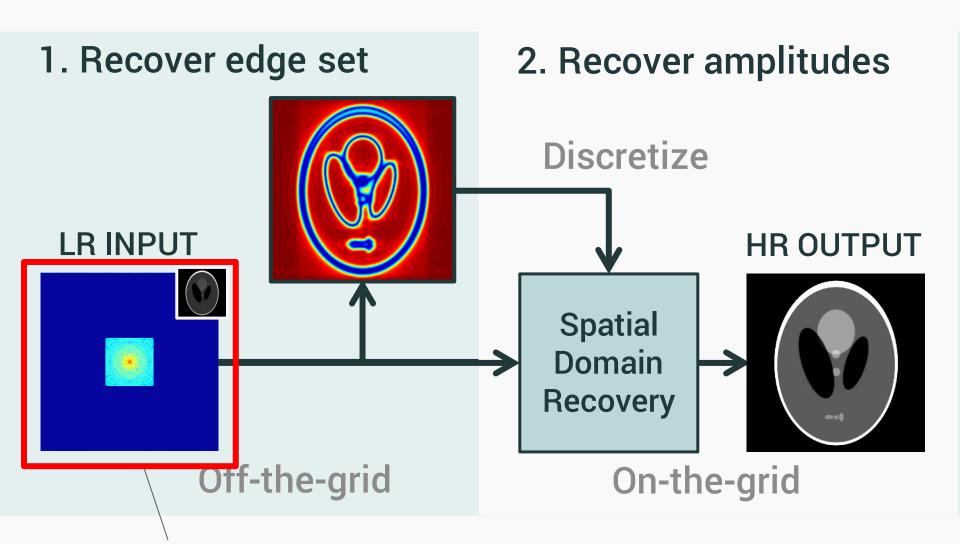
Super-resolution of Real MRI Data (Zoom)

(e) TV reg. SNR=18.5dB



(f) Proposed, LSLP SNR=18.9dB

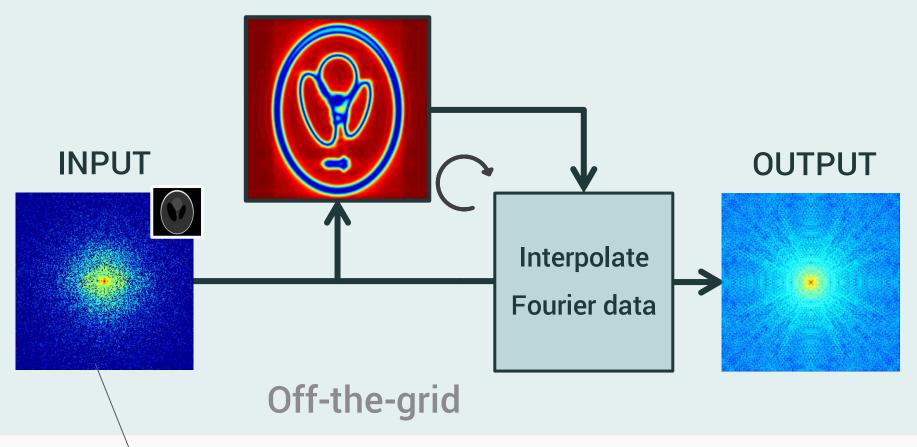
Two Stage Algorithm



Need uniformly sampled region!

One Stage Algorithm [O. & Jacob, SampTA 2015]

Jointly estimate edge set and amplitudes



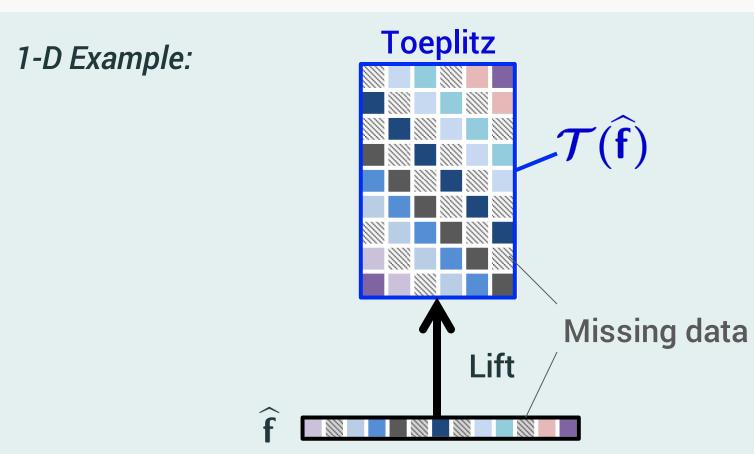
Accommodate random samples

Recall: $\mathcal{T}(\widehat{\mathbf{f}})$ low rank \leftrightarrow \mathbf{f} piecewise constant

Toeplitz-like matrix built from Fourier data

$$\min_{\widehat{f}} \ \operatorname{rank}[\mathcal{T}(\widehat{f})] \ \text{s.t.} \ \widehat{f}[k] = \widehat{b}[k], k \in \Gamma$$

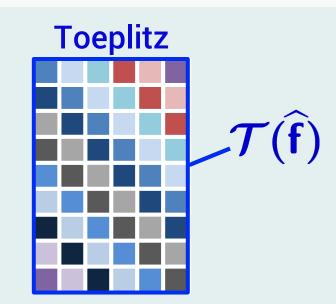
$$\min_{\widehat{f}} \ \operatorname{rank}[\mathcal{T}(\widehat{f})] \ \text{ s.t. } \ \widehat{f}[k] = \widehat{b}[k], k \in \Gamma$$



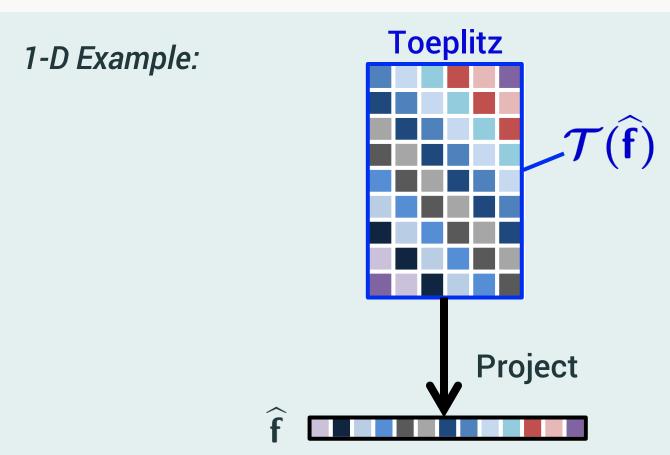
$$\min_{\widehat{f}} \ \operatorname{rank}[\mathcal{T}(\widehat{f})] \ \text{ s.t. } \ \widehat{f}[k] = \widehat{b}[k], k \in \Gamma$$

1-D Example:

Complete matrix



$$\min_{\widehat{f}} \ \operatorname{rank}[\mathcal{T}(\widehat{f})] \ \text{s.t.} \ \widehat{f}[k] = \widehat{b}[k], k \in \Gamma$$



$$\min_{\widehat{f}} \ \operatorname{rank}[\mathcal{T}(\widehat{f})] \ \text{s.t.} \ \widehat{f}[k] = \widehat{b}[k], k \in \Gamma$$

NP-Hard!

$$\begin{split} \min_{\widehat{f}} \quad & \operatorname{rank}[\mathcal{T}(\widehat{f})] \quad \text{s.t.} \quad \widehat{f}[k] = \widehat{b}[k], k \in \Gamma \\ & \qquad & \downarrow \quad \text{Convex Relaxation} \\ & \quad & \quad & \quad & \\ \min_{\widehat{f}} \quad & \|\mathcal{T}(\widehat{f})\|_* \quad \text{s.t.} \quad \widehat{f}[k] = \widehat{b}[k], k \in \Gamma \end{split}$$

Nuclear norm - sum of singular values

Computational challenges

Standard algorithms are slow:

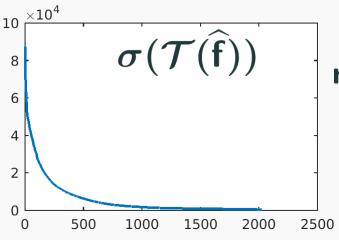
Apply ADMM = Singular value thresholding (SVT)

Each iteration requires a large SVD:

$$dim(\mathcal{T}(\widehat{f})) \approx \text{ (\#pixels) x (filter size)}$$
 e.g. 10^6 x 2000

Real data can be "high-rank":

e.g. Singular values of Real MR image



 $\mathsf{rank}(\mathcal{T}(\widehat{\mathsf{f}})) \approx 1000$

Proposed Approach: Adapt IRLS algorithm

- IRLS: Iterative Reweighted Least Squares
- Proposed for low-rank matrix completion in [Fornasier, Rauhut, & Ward, 2011], [Mohan & Fazel, 2012]
- Adapt to structured matrix case:

$$\begin{cases} \mathbf{W} \leftarrow [\mathcal{T}(\widehat{\mathbf{f}})^* \mathcal{T}(\widehat{\mathbf{f}}) + \epsilon \mathbf{I}]^{-\frac{1}{2}} \text{ (weight matrix update)} \\ \widehat{\mathbf{f}} \leftarrow \arg\min_{\widehat{\mathbf{f}}} \|\mathcal{T}(\widehat{\mathbf{f}}) \mathbf{W}^{\frac{1}{2}}\|_{\mathsf{F}}^2 \text{ s.t. } \mathbf{P}\widehat{\mathbf{f}} = \mathbf{b} \text{ (LS problem)} \end{cases}$$

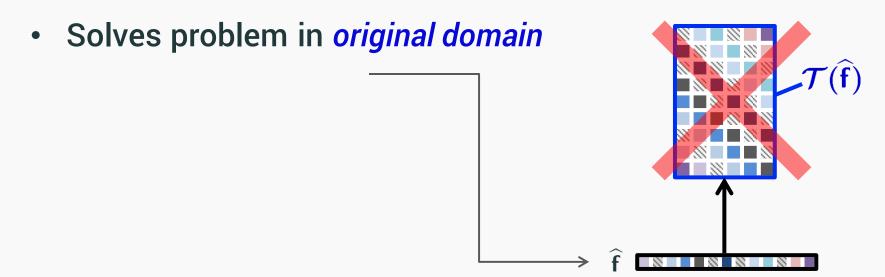
Without modification, this approach is slow!

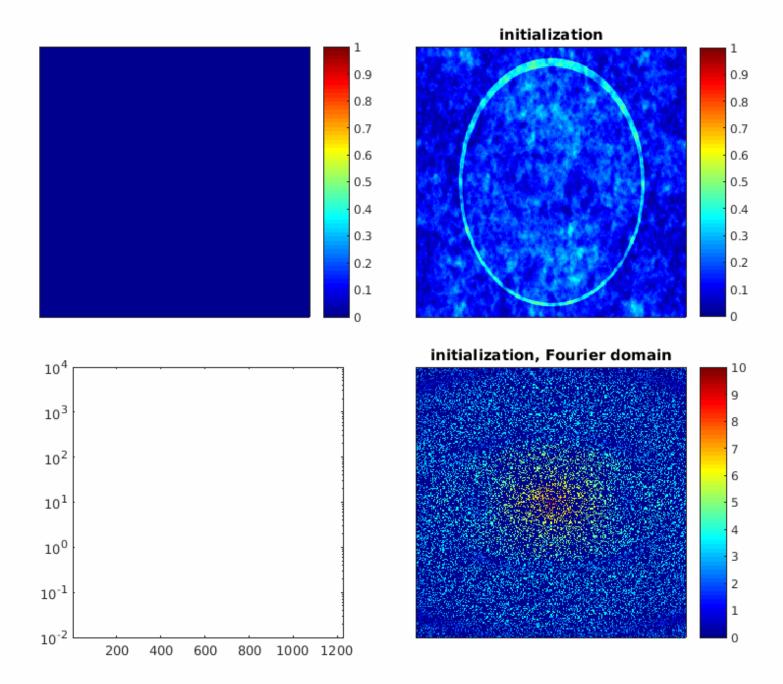
GIRAF algorithm [O. & Jacob, ISBI 2016]

- GIRAF = Generic Iterative Reweighted Annihilating Filter
- Exploit convolution structure to simplify IRLS algorithm:

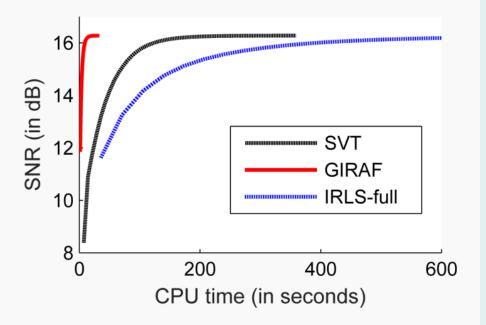
$$\begin{cases} \mu \leftarrow \sum \lambda_{i}^{-\frac{1}{2}} \mu_{i} \text{ (annihilating filter update)} \\ \widehat{f} \leftarrow \arg \min_{\widehat{f}} \|\widehat{f} * \widehat{\mu}\|_{2}^{2} \text{ s.t. } P\widehat{f} = b \text{ (LS problem)} \end{cases}$$

Condenses weight matrix to single annihilating filter





Convergence speed of GIRAF



	15×15 filter		31×31 filter	
Algorithm	# iter	total:	# iter	total
SVT	7	110s	11	790 s
GIRAF	6	20s	7	44 s

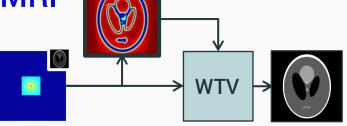
Table: iterations/CPU time to reach convergence tolerance of NMSE < 10⁻⁴.

TV (SNR=17.8dB) Fully sampled **GIRAF (SNR=19.0)** 50% Fourier samples Random uniform error error

Summary

- New framework for off-the-grid image recovery
 - Extends FRI annihilating filter framework to piecewise polynomial images
- f(x, y)

- Sampling guarantees
- Two stage recovery scheme for SR-MRI
 - Robust edge mask estimation
 - Fast weighted TV algorithm



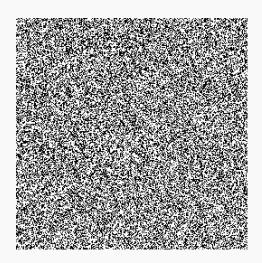
- One stage recovery scheme for CS-MRI
 - Structured low-rank matrix completion
 - Fast GIRAF algorithm

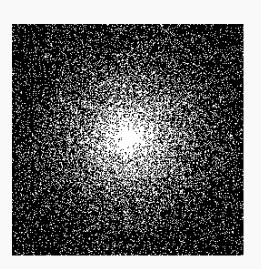
Future Directions

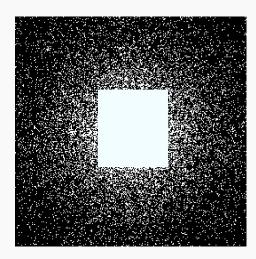
- Focus: One stage recovery scheme for CS-MRI
 - Structured low-rank matrix completion

$$\min_{\widehat{\mathsf{f}}} \|\mathcal{T}(\widehat{\mathsf{f}})\|_*$$

- Recovery guarantees for random sampling?
- What is the optimal random sampling scheme?







Thank You!

References

- Krahmer, F. & Ward, R. (2014). Stable and robust sampling strategies for compressive imaging. *Image Processing, IEEE Transactions on*, 23(2), 612-
- Pan, H., Blu, T., & Dragotti, P. L. (2014). Sampling curves with finite rate of innovation. *Signal Processing, IEEE Transactions on*, 62(2), 458-471.
- Guerquin-Kern, M., Lejeune, L., Pruessmann, K. P., & Unser, M. (2012). Realistic analytical phantoms for parallel Magnetic Resonance Imaging. *Medical Imaging, IEEE Transactions on*, 31(3), 626-636
- Vetterli, M., Marziliano, P., & Blu, T. (2002). Sampling signals with finite rate of innovation. *Signal Processing, IEEE Transactions on*, 50(6), 1417-1428.
- Sidiropoulos, N. D. (2001). Generalizing Caratheodory's uniqueness of harmonic parameterization to N dimensions. *Information Theory, IEEE Transactions on,47*(4), 1687-1690.
- Ongie, G., & Jacob, M. (2015). Super-resolution MRI Using Finite Rate of Innovation Curves. Proceedings of ISBI 2015, New York, NY.
- Ongie, G. & Jacob, M. (2015). Recovery of Piecewise Smooth Images from Few Fourier Samples. *Proceedings of SampTA 2015, Washington D.C.*
- Ongie, G. & Jacob, M. (2015). Off-the-grid Recovery of Piecewise Constant Images from Few Fourier Samples. Arxiv.org preprint.
- Fornasier, M., Rauhut, H., & Ward, R. (2011). Low-rank matrix recovery via iteratively reweighted least squares minimization. *SIAM Journal on Optimization*, 21(4), 1614-1640.
- Mohan, K, and Maryam F. (2012). Iterative reweighted algorithms for matrix rank minimization." The Journal of Machine Learning Research 13.1 3441-3473.

Acknowledgements

 Supported by grants: NSF CCF-0844812, NSF CCF-1116067, NIH 1R21HL109710-01A1, ACS RSG-11-267-01-CCE, and ONR-N000141310202.