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ABSTRACT

Reconstructing multiple material-specific images in dual-
energy CT is a challenging non-linear inverse problem. Tra-
ditionally, the reconstruction process consists of two steps:
material decomposition and tomographic reconstruction.
Model-based iterative reconstruction methods that combine
material decomposition and tomographic reconstruction into
a unified “one-step” framework provide improved estimates,
but require longer reconstruction times. To address this,
we propose a supervised machine learning technique to ac-
celerate one-step iterative dual-energy CT reconstruction.
Specifically, we train a deep neural network embedded in an
“unrolling” of a model-based iterative algorithm. We demon-
strate this approach on the problem of identifying three mate-
rials (adipose tissue, fibroglandular tissue, and calcifications)
from simulated breast dual-energy CT data. Empirically,
we find that the unrolling approach gives accurate material
map estimates in few iterations, and outperforms a baseline
image-domain learning approach.

Index Terms— dual-energy CT, material decomposition,
model-based iterative reconstruction, machine learning

1. INTRODUCTION

Current medical practice relies heavily on mammography for
breast imaging. However, as many as 43% of women ages
40-74 have breast tissue that contains a large proportion of
fibroglandular tissue (dense breast tissue), and mammogra-
phy is known to be less effective in detecting calcifications
for these women [1]. Conventional single-energy computed
tomography (CT) is similarly limited in its ability to differen-
tiate between adipose (fatty) tissue, fibroglandular tissue, and
calcifications, even with the use of dedicated breast CT sys-
tems [2]. Using dual-energy CT (DECT) to reconstruct dis-
tinct material maps for adipose tissue, fibroglandular tissue,
and calcifications offers potential diagnostic improvement.

However, reconstructing material maps from DECT trans-
mission data is a challenging non-linear – and often ill-posed
– inverse problem. Traditionally, reconstruction is performed

by a two-step procedure that separates the problems of to-
mographic reconstruction and materials decomposition, but
this approach can introduce significant artifacts in the pres-
ence of noise and incomplete data acquisition. Instead, sev-
eral “one-step” model-based iterative reconstruction methods
have also been proposed [3, 4, 5]. These approaches require
optimizing a large-scale non-convex (and often non-smooth)
cost function, which presents practical challenges. Recently,
extensions of the alternating direction method of multipliers
(ADMM) to non-convex objectives have been investigated for
one-step multi-energy CT reconstruction [6, 7, 8, 9]. These
approaches have shown success in material map estimation,
but require many iterations for accurate reconstructions, lead-
ing to long reconstruction times.

We investigate a novel deep learning approach inspired by
the non-convex ADMM algorithm proposed in [9]. Specifi-
cally, we train a network that estimates material maps from
noisy/undersampled dual-energy transmission data, which is
then embedded inside the ADMM iterations as a regulariza-
tion step. This estimator (initialization layer plus a fixed num-
ber of unrolled iterations of ADMM) is trained end-to-end
in a supervised manner. Our main technical contribution is
to show that the non-convex ADMM updates can be back-
propagated through using implicit differentiation, allowing
for end-to-end training. The proposed approach is shown
to improve the accuracy of material maps obtained using a
baseline image-domain learning-based approach on simulated
data.

Related work Several recent works have investigated ma-
chine learning techniques for materials decomposition in
dual-energy CT. Image-domain approaches include training
a convolutional neural network to directly estimate materials
decomposition from attenuation images [10, 11], and sparse
transform learning [12]. Our approach is similar to other
dual-domain approaches, such as [13], which proposed train-
ing separate networks to restore data in projection and image
domain, and [14], which uses a learned generative model as
a prior. Different from these works, our approach is based
on approximating a maximum likelihood estimate using an
unrolling of non-convex ADMM [9].



2. PROBLEM FORMULATION

In this work, we assume a rapid kV switching DECT acquisi-
tion where high energy (80kV ) and low energy (50kV ) pro-
jection views are interleaved. We model the acquired DECT
transmission counts ck,ℓ at energy level k ∈ {80kV, 50kV },
along ray ℓ as ck,ℓ ∼ Poisson(ĉk,ℓ) where

ĉk,ℓ =

Ek∑
i=1

sk,i exp

(
−

M∑
m=1

µk,i,mym,ℓ

)
, (1)

where ym,ℓ is the projection of the mth material map along
ray ℓ, µk,i,m is the attenuation coefficient of material m for
photons at energy i and energy window k, and sk,i is the in-
cident photon spectral density at energy i. To make the de-
pendence on the material maps x ∈ RMN explicit, we define
ĉ(y) to be the vector of transmission counts ĉk,ℓ at all ener-
gies k and all rays ℓ, and let y = Px, where P is the discrete
fan-beam projection applied separately to each material map.

The maximum likelihood estimate of the material maps
given dual-energy transmission counts c is the solution of the
optimization problem

min
x

L(Px) (2)

where L(y) = L(y; c) is the Poisson negative log-likelihood:

L(y) =
∑
k,ℓ

(
ĉk,ℓ(y)− ck,ℓ − ck,ℓ log

(
ĉk,ℓ(y)

ck,ℓ

))
Note that we may write L(y) = Lc(y) + Ld(y) + C where

Lc(y) =
∑
k,ℓ

ĉk,ℓ(y) and Ld(y) = −
∑
k,ℓ

ck,ℓ log(ĉk,ℓ(y)).

with Lc convex, and Ld non-convex but smooth, and C is a
constant independent of y.

3. METHODS

Our goal is to enhance an ADMM algorithm designed to opti-
mize (2) with supervised learning techniques. Here we briefly
discuss the form the ADMM updates take for this problem,
and how these updates may be backpropagated though. Then
we discuss how to train an initialization/regularization net-
work for the ADMM algorithm.

3.1. One-step iterative reconstruction via ADMM

Here we summarize the steps involved in applying the non-
convex ADMM algorithm proposed in [9] to minimize the
non-convex loss (2). First, we recast (2) as a constrained op-
timization problem:

min
x,y

L(y) s.t. Px = y.

Consider the associated augmented Lagrangian:

F (x,y,u) = L(y) + ⟨Px− y,u⟩+ 1

2
∥Px− y∥2Σ

where u is a vector of Lagrange multipliers, and ∥z∥Σ :=
z⊤Σz where Σ is a diagonal “step-size” matrix. Following
[9], we choose Σ = diag(P1/σ)−1 where σ > 0 is a user-
set parameter, and 1 is a vector of all ones. The non-convex
ADMM algorithm of [9] proceeds by cycling between min-
imizing F with respect to x and y, with the other variables
fixed, followed by an update of the dual variable u. However,
when updating the y variable, the non-convex function L(y)
is replaced with a convex surrogate given by linearizing the
smooth part about the current iterate y = y(k):

L(y) ≈ Lc(y) + L(y(k)) + ⟨∇Ld(y
(k)),y − y(k)⟩+ C.

Additionally, the x-update can be simplified by adding in a
proximal term of the form ∥x− x(k)∥2H for a specific choice
of positive definite H (see [9] for details). Together, this
yields the non-convex ADMM updates

y(k+1) = argmin
y

{
Lc(y) + ⟨y,∇Ld(y

(k))− u(k)⟩

+ 1
2∥Px(k) − y∥2Σ

}
(3)

x(k+1) = x(k) +Q−1P⊤(Σ(y(k+1) − Px(k))− u(k))
(4)

u(k+1) = u(k) +Σ(Px(k+1) − y(k+1)) (5)

where Q = diag(σP⊤1) (the role of the Q matrix is dis-
cussed further in [9]). The y-update (3) has no closed-form
solution, but the objective is smooth, strongly convex, and
separable over all energy/ray pairs (k, ℓ), and is optimized ef-
ficiently by running Newton iterations in parallel [9].

As an additional regularization step, we propose adding
an intermediate x-update following the y-update (3) of the
form

x(k) = Rθ(y
(k+1)) (6)

where Rθ is a learned regularization network (described be-
low), such that x(k) is used in place of x(k) in (4).

3.2. Backpropagating through ADMM updates

The ADMM y-update (3), which is defined implicitly as the
solution to an optimization problem, does not have a simple
closed-form expression. Despite this fact, we show how to
differentiate the y-update with respect to the ADMM state
variables (x,y,u). First, observe that the y-update requires
solving an optimization problem of the form

min
ỹ

Lc(ỹ) + ⟨ỹ,v⟩+ 1

2
∥ỹ∥2Σ︸ ︷︷ ︸

F (ỹ,v)



where v = ∇Ld(y) − u − ΣPx, with (x,y,u) being the
current ADMM state variables. This optimization problem is
smooth and strongly convex, thus has a unique minimizer y∗

characterized by the optimality condition ∇ỹF (y∗,v) = 0.
This is equivalent to the fixed-point equation

y∗ = −Σ−1v −Σ−1∇Lc(y
∗) := f(y∗,v). (7)

Using this fact, we may compute the derivatives of y∗ with
respect to v (and hence with respect to the ADMM state vari-
ables) using implicit differentiation. In particular, backprop-
agation requires vector-Jacobian products (VJPs) of the form
w⊤

(
∂y∗

∂v

)
where w is an arbitrary vector. Differentiating

both sides of the fixed-point equation (7) we may deduce

∂y∗

∂v =
(
I −

[
∂f
∂y∗

])−1
∂f
∂v

and so the (transpose of) VJPs with any vector w is given by

(
∂y∗

∂v

)⊤
w =

(
∂f
∂v

)⊤(
I −

[
∂f
∂y∗

]⊤)−1

w. (8)

The right-hand side of (8) reduces to finding the solution q of
the linear system

(
Σ+∇2Lc(y

∗)
)
q = w where ∇2Lc(y

∗)
denotes the Hessian of Lc at y∗. This system decouples over
the ray index ℓ resulting in a collection of nrays independent
M ×M linear systems (where M is the number of materials)
that are solvable in parallel. Therefore, once the update y∗

is obtained, computing VJPs as needed for backpropagation
involves a straightforward linear solve.

3.3. Transmissions-to-Materials (T2M) Network

In order to initialize and regularize the proposed ADMM un-
rolling, we train a “transmissions-to-materials” (T2M) net-
work Mθ(·) that takes as input the DECT transmission counts
c and outputs an estimate of the material maps x. Specifi-
cally, the T2M network performs two operations: first, it com-
putes an estimate of the high/low energy attenuation images
by applying filtered back projection to the negative log of the
high/low transmission data c (zero-filling any missing views
in projection domain), then it applies a trainable image-to-
image fully convolutional neural network Uθ(·) to estimate a
materials decomposition; in our experiments we use a U-net
architecture [15] for Uθ. Put in symbols, the T2M network
has the form: Mθ(c) = Uθ(FBP(− log(c))).

We convert the T2M network into a regularization net-
work Rθ (as used in the ADMM x-update (6)) by simulat-
ing transmission data from the current projection-domain es-
timate y, and passing this into the T2M network, i.e., we set
Rθ(y) = Mθ(ĉ(y)), where ĉ is defined in (1). This is sim-
ilar to the “reuse-and-regularize” approach proposed in [16],
where a pre-trained reconstruction network is reused as a reg-
ularizer in an iterative reconstruction algorithm.

3.4. End-to-end Training

Our unrolled ADMM estimator is constructed as follows: we
initialize with x(0) = Mθ(c), y(0) = Px(0), and u(0) =
0, then run K iterations of ADMM with the embedded T2M
network. The returned estimate of the material maps is x̂ =
x(K), i.e., the final ADMM x-update after K iterations. We
write this estimator as x̂ = ADMM(K)

θ (c), where θ are the
trainable parameters of the embedded T2M network.

Given a training set {(xi, ci)}ni=1 where xi is a set of
ground truth material maps xi, and ci is the corresponding
DECT transmission data, we train the unrolled estimator by
attempting to minimize the mean-squared error over the train-
ing set:

min
θ

n∑
i=1

∥ADMM(K)
θ (ci)− xi∥22

Using the implicit differentiation routine outlined in Sec. 3.2,
the unrolled ADMM estimator is fully differentiable with re-
spect to the T2M network parameters θ, and gradients of the
above loss function can be computed using standard autodif-
ferentiation tools.

4. EXPERIMENTS

In our experiments, we use the simulated alternating view
DECT transmission data based on breast CT phantoms pro-
vided with the AAPM Spectral Computed Tomography Im-
age Reconstruction Challenge [17]. The goal of the AAPM
Spectral CT challenge was to reconstruct three material maps
(adipose tissue, fibroglandular tissue, and calcifications) from
alternating view DECT transmission data in the absence of
noise. Our work extends this by additionally considering sim-
ulated Poisson noise in the transmission counts.

The accuracy of each material map reconstructions is as-
sessed using the root mean square error (RMSE), defined as
∥x̂ − x∥2/

√
N , where x̂ is the reconstructed material maps,

x is the ground truth material maps, and N is the total number
of pixels in one set of three material maps. Additionally, the
Poisson negative log-likelihood cost (as defined in (2)) is also
computed for each reconstruction. To compare experimental
results across algorithms, the mean RMSE on a test set of 100
simulated ground truth phantoms is used.

We compare our unrolled estimator against two baseline
approaches: a T2M Network (U-net) trained to map from
high/low energy attenuation maps to three material maps, and
an iterative ADMM algorithm that uses the T2M Network
output as the initialization for an ADMM algorithm with gen-
eralized total variation (gTV) regularization (similar to [18]).

For the T2M network, a training set of 800 phantom im-
ages was used to train the network using a basic U-net ar-
chitecture. For each training phantom, we generated a set of
simulated dual energy transmissions with 512 views, 1024 de-
tector pixels, and 50, 000 photons/detector pixel. The trans-
mission images were then used as input to the U-net model
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Difference from Ground Truth
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Ground Truth

T2M Network
RMSE = 0.0230
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Unrolled
ADMM
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RMSE = 0.0225

Cost = 5.512

Fig. 1. Material map estimates for a single test phantom (best viewed digtially).

Test RMSE (mean ± std. dev.) Avg. Recon Time (sec.)

T2M network 0.0216± 0.0025 0.02
ADMM w/TV reg. (100 iter) 0.0213± 0.0025 9.09
Unrolled ADMM (proposed) 0.0209± 0.0025 0.82

Table 1. Quantitative results on test set

which was trained over 50 epochs to minimize the MSE loss
between the model generated material map reconstruction and
the original phantom image. Applying the trained T2M net-
work model to our test set of 100 phantom images yielded a
test RMSE of 0.0216± 0.0025 and an average reconstruction
time of 0.02 seconds.

The second baseline builds off of the pre-trained T2M net-
work by using the network output as the initialization for 100
iterations of ADMM with gTV constraints. For the test set,
this approach yields a mean test RMSE of 0.0213± 0.0025, a
slight improvement over the T2M network alone. The mean
reconstruction time for this approach is substantially higher at
9.09 seconds per image.

For the proposed approach, we unrolled K = 8 itera-
tions of ADMM with the embedded T2M network. Using
pre-trained T2M network weights as the initialization, we re-
trained the unrolled ADMM estimator on the same 800 im-
age training set. After re-training, the unrolled ADMM es-
timator resulted in a mean test RMSE of 0.0209 ± 0.0025
and an average reconstruction time of 0.82 seconds. Using
this approach we see a decrease in RMSE from both the T2M

network and the T2M initialized ADMM with gTV regular-
ization with only a small increase in reconstruction time from
the T2M network approach.

Figure 1 shows each of the reconstruction methods ap-
plied to a sample breast phantom from the test set. The dif-
ference images show that the proposed approach shows less
error at the boundaries of the tissues. We also observe that
some spurious dark spots present in the Adipose map of the
two baselines approaches are suppressed with the proposed
approach.

5. CONCLUSION

We propose training an unrolled iterative estimator for one-
step DECT material decomposition based on a non-convex
ADMM algorithm. The unrolled estimator contains a train-
able “transmissions-to-materials” network acting as an ini-
tialization layer and regularizer. Our experiments on syn-
thetic breast CT data show that end-to-end training of the un-
rolled estimator yields improved accuracy over the estimates
provided by the “transmissions-to-materials” network alone
and its iterative refinement with total variation constrained
ADMM. In future work, we will explore alternative types
of regularization networks inside the iterations of the non-
convex ADMM algorithm, as well as the application of trans-
fer learning approaches to enable the application of our meth-
ods to real data, which has recently shown to be effective in a
spectral CT context [19].
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