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Abstract—This work investigates the problem of adaptive
measurement design for online subspace estimation from
compressive linear measurements. We study the previ-
ously proposed Grassmannian rank-one online subspace
estimation (GROUSE) algorithm with adaptively designed
compressive measurements. We propose an adaptive mea-
surement scheme that biases the measurement vectors
towards the current subspace estimate and prove a global
convergence result for the resulting algorithm. Our ex-
periments on synthetic data demonstrate the effectiveness
of the adaptive measurement scheme over non-adaptive
compressive random measurements.

I. INTRODUCTION

Subspace estimation and tracking plays an important
role in many signal processing tasks such as identifi-
cation of network anomalies [1] and beamforming [2]
among others. Given a sequence of input vectors, the
goal in these problems is to estimate a linear low-
dimensional subspace that describes the data well. How-
ever, for many applications it is challenging or impossi-
ble to achieve full sampling of the input vectors due to
their high-dimensionality or due to costs associated with
the measurement process. To remedy this issue, several
online subspace estimation algorithms have been pro-
posed that can accommodate entrywise undersampling
and/or compressive linear measurements of the input
stream [3]–[6].

However, little attention has been given to adaptive or
active sampling strategies for online subspace estimation.
The typical approach is to undersample the input vectors
uniformly at random [3]–[5] or take isotropic random
Gaussian measurements [7]. Motivated by the success
of adaptive sensing for compressed sensing of sparse
vectors [8]–[14] and low-rank matrix/tensor completion
[15]–[17], we investigate an adaptive sensing strategy
for online subspace estimation from compressive linear
measurements using the Grassmannian rank-one update
subspace estimation algorithm (GROUSE) [3], [7]. We
show that an adaptive sensing strategy that biases the

sensing vectors towards the current subspace estimate
improves the GROUSE convergence rate relative to non-
adaptive random Gaussian measurements. Extending re-
cently developed convergence theory in [7] we also
give a global convergence result for GROUSE with the
proposed adaptive compressive measurement scheme,
providing the first such guarantee for GROUSE with
compressive measurements. Finally, we demonstrate the
benefits of the adaptive sensing scheme with several
numerical simulations.

A. Related Work
To the best of our knowledge, the only previous work

to consider adaptive sensing (i.e., active learning) for
online subspace estimation is [6]. Motivated by multi-
armed bandits theory, the authors of [6] consider strate-
gies for active selection of entrywise samples of input
vectors and prove results on the sampling complexity
of their approach. The present work differs from [6]
in that we consider adaptive sensing specifically for the
GROUSE online subspace estimation algorithm and use
a different adaptive measurement model. In particular,
we assume that we can take arbitrary linear measure-
ments of the input vectors, rather than entrywise samples.

II. PROBLEM FORMULATION

For any matrix V let R(V ) denote the range space of
V , i.e., the linear span of the columns of V . We model
the ground truth data as a sequence of vectors {xt}Tt=1

drawn from a fixed d-dimensional subspace S ⊂ Rn

according to the generative model:

xt = Uwt, t = 1, ..., T, (1)

where the columns of U ∈ Rn×d form an orthonormal
basis for S, meaning S = R(U) and UTU = Id×d, and
wt ∈ Rd are the subspace weights at time t. We suppose
that for each time t we observe m linear measurements:

yt = Atxt ∈ Rm; t = 1, ..., T, (2)



where the measurement matrix At ∈ Rm×n can be adap-
tively designed and d < m� n. Our goal is to estimate
S from the sequence {yt}Tt=1. The main question we
investigate in this work is whether the subspace S can
be estimated more efficiently by choosing an appropriate
design of the measurement matrices {At}Tt=1. We will
assume the choice of each measurement matrix At is
unconstrained except that its sensing energy ‖At‖F is
bounded above by a fixed constant for all times t. In
this work we will use the normalization ‖At‖F ≤ m
for all t, which holds, for example, when the rows of
At are unit-norm. When At is a random matrix, we
assume ‖At‖F ≤ m holds in expectation.

III. ADAPTIVE GROUSE

A. Compressive GROUSE algorithm

For our online subspace estimation algorithm we in-
vestigate a modification of the compressive GROUSE
algorithm proposed in [7]. GROUSE is designed to ap-
proximately minimize the following global cost function
in an online fashion:

min
U ,{wt}Tt=1

T∑
t=1

‖AtUwt − yt‖2 s.t. R(U) ∈ G(n, d)

(3)
where G(n, d) denotes the Grassmannian, the set of
d-dimensional subspaces in Rn. At each time t the
GROUSE algorithm performs one step of block coor-
dinate descent applied to the local cost function

min
U ,wt

‖AtUwt − yt‖2 s.t. R(U) ∈ G(n, d). (4)

Let Ut be the current estimate of U . Fixing U = Ut in
(4), the optimal weights wt are given by

wt = (AtUt)
†yt (5)

where (·)† denotes the Moore-Penrose pseduoinverse.
Then, with the optimal weights wt fixed, GROUSE
updates the subspace representative Ut+1 by taking a
gradient step of the objective (4) along a geodesic
in the Grassmannian. These steps are summarized in
Algorithm 1. For their derivation see [3], [7].

B. Proposed adaptive measurement design

Given the subspace estimate Ut at time t, we propose
using the adaptive measurement design

At =

[
UT

t

BT
t

]
∈ Rm×n (6)

where the columns of Bt ∈ Rn×(m−d) are drawn
randomly from the orthogonal complement of R(Ut)

in a manner specified below. Put in words, we draw d
measurement vectors from the current subspace estimate
and draw the remaining m − d measurement vectors
randomly from its orthogonal complement.

The idea behind this scheme is that including the
columns of Ut as measurement vectors gives us the
projection of the ground truth data xt onto the subspace
R(Ut) at each iteration. As the estimate of R(Ut)
improves, the projection of xt onto R(Ut) will contain
an increasingly larger proportion of the total energy of
xt, yielding a positive feedback effect which enables
faster convergence of the algorithm. We quantify this
effect in the next section.

Algorithm 1: Adaptive GROUSE
For each time t do the following.

1. Choose a new measurement matrix:

At =

[
UT

t

BT
t

]
where Bt ∈ Rn×(m−r) with UT

t Bt = 0.

2. Update subspace estimate:

update weights: wt = (AtUt)
†yt

compute projection: pt = Utwt

compute residual: rt = AT
t (Atpt − yt)

compute stepsize: θt = arctan
(
‖rt‖
‖pt‖

)
update subspace:

Ut+1 = Ut+
(
sin(θt)

rt
‖rt‖ + (cos(θt)− 1) pt

‖pt‖

)
wT
t

‖wt‖

IV. MAIN RESULTS

The main theoretical contribution of this work is
a global convergence theorem for adaptive GROUSE
(Algorithm 1). These results extend the convergence
results in [7] given for GROUSE with non-adaptive
measurements. Due to space restrictions, we omit the
proofs.

We make the following statistical assumptions on the
data and measurement models:

Assumption 1. The underlying data is generated accord-
ing to the model (1), where for each time t the subspace
weights wt ∈ Rd are uncorrelated and the entries of wt

have zero mean and unit variance.

Assumption 2. For each time t, the measurements Bt in
(6) are generated according to Bt = (In×n−UtU

T
t )Gt,

where Gt ∈ Rn×(m−d) is a random matrix with i.i.d
sub-gaussian entries Gi,j , such that E[Gi,j ] = 0 and
Var[Gi,j ] =

1
n−d .
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We state our results in terms of the following similar-
ity measure for subspaces:

Definition 1. The determinant similarity ζ ∈ [0, 1]
between subspaces R(U) and R(V ) is defined as

ζ := det(UTV V TU) =

d∏
k=1

cos2(φk) (7)

where φk is the kth principal angle between R(U) and
R(V ).

Let ζt denote the determinant similarity between the
underlying subspace R(U) and the estimate R(Ut) at
time t. Our first result quantifies the expected improve-
ment in ζt for each iteration of Algorithm 1.

Lemma 1. For each iteration t of Algorithm 1 the
expected improvement in determinant similarity is at
least

E
[
ζt+1

ζt
,Ut

]
≥ 1 + η

m− d
n

1− ζt
d

, (8)

where η = 1− m+1
n .

Lemma 1 should be compared with Lemma 9 in [7]
that shows GROUSE with m = O(d log n) non-adaptive
random Gaussian measurements achieves

E
[
ζt+1

ζt
,Ut

]
≥ 1 + η1

m

n

1− ζt
d

, (9)

with high probability, where η1 ≈ 1 is a dimensionally-
dependent constant. The constant η1m

n is slightly better
than (1 − m+1

n )m−dn in Lemma 1. However, a major
difference is that Lemma 1 is non-probabilistic and
holds for all m > d, rather than with high probability
when m = O(d log n). This suggests that the adaptive
measurement scheme may perform better when the num-
ber of measurements per time point m is close to the
subspace dimension d.

We now present our main result: the global conver-
gence of the Adaptive GROUSE algorithm. The result
is a direct consequence of Lemma 1, and the proof is
similar to that of Theorem 7 in [7], which considers the
case of fully sampled data.

Theorem 1. Let 0 < ζ∗ ≤ 1 be a desired accuracy and
let the initialization R(U0) coincide with the column
span of an n× d random matrix whose entries are i.i.d.
standard normal random variables. Then for any p > 0,
after

K ≥
(

n

η(m− d)
2d2

ρ
+ 1

)
τ0 log(n)

+
n

η(m− d)
2d log

(
1

2ρ(1− ζ∗)

)

iterations of Algorithm 1,

P(ζK ≥ ζ∗) ≥ 1− 2p, (10)

where τ0 = 1 +
log(

(1−ρ/2)
C )+d log(e/d)

d log(n) , C > 0 is a
constant approximately equal to 1, and η is the same
as in Lemma 1.

An analogous global convergence result for the non-
adaptive version of Algorithm 1 where At consists of
random Gaussian entries has not been established yet.
The main impediment is that the expected improvement
in the determinant similarity is not monotonic in that
case. The proposed adaptive sensing strategy, on the
other hand, ensures monotonic improvement of the de-
terminant similarity in expectation, allowing us to obtain
the global convergence guarantee of Theorem 1.

V. EXPERIMENTS

This section illustrates the empirical performance of
the proposed adaptive sensing scheme on simulated
data. We compare Adaptive GROUSE (Algorithm 1) to
GROUSE with non-adaptive random measurements (Al-
gorithm 1 with At chosen as a random Gaussian matrix),
which we call Non-adaptive GROUSE. We generated
data according to the model (1) with random subspace
basis U and i.i.d. subspace weights wt ∼ N (0, Id×d),
matching Assumption 1. The measurement matrices
for Non-adaptive GROUSE are generated with i.i.d.
N (0, 1/n) entries, and those for Adaptive GROUSE
are generated according to (6) with Bt = (In×n −
UtU

T
t )Gt where Gt has i.i.d. N (0, 1/(n− d)) entries,

matching Assumption 2.
Figures 1 and 2 consider three settings: a) n =

200, d = 5,m = 10, b) n = 200, d = 2,m = 5,
and c) n = 200, d = 5,m = 30. Settings (a) and (b)
have relatively few measurements whereas setting (c) has
around d log n measurements. Figure 1 shows the deter-
minant similarity (7) over several iterations of the two
approaches. In (a) and (b), Adaptive GROUSE converges
in fewer iterations and does so more consistently than
Non-adaptive GROUSE, which has varied convergence
rates in (a) and rarely converges in (b). They perform
similarly in (c), which illustrates that the benefit of
adaptive measurements diminishes as the number of
measurements per time instant increases.

Figure 2 shows the improvement ζt+1/ζt in determi-
nant similarity of a single iteration versus ζt for the two
approaches. The estimates of the conditional expected
improvements are formed by averaging the improve-
ments ζt+1/ζt for all iterates with determinant similarity
ζt within a 0.01 radius; values of ζt with fewer than 400
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Fig. 1: Determinant similarity (7) over several iterations of Non-adaptive GROUSE (shown in blue) and Adaptive
GROUSE (shown in red). For each approach, the traces from twenty sample runs are shown as dashed lines, and
the mean from two hundred runs is shown as a solid line.
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Fig. 2: Improvement ζt+1/ζt in determinant similarity of a single iteration versus determinant similarity ζt for Non-
adaptive GROUSE (shown in blue) and Adaptive GROUSE (shown in red). For each approach, the determinant
similarity ζt and improvement ζt+1/ζt for three thousand samples are shown as dots, and an estimate of the
conditional expected improvement is shown as a solid line. The theoretical bound (8) of Lemma 1 is shown as a
solid green line.
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(a) First phase: iterations from initialization to ζt ≥ 1/2.
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(b) Second phase: iterations from ζt ≥ 1/2 to ζt ≥ ζ∗ = 0.99.

Fig. 3: Iterations required to pass through two phases of GROUSE convergence versus the number of samples m
for Non-adaptive GROUSE (shown in blue) and Adaptive GROUSE (shown in red). For each approach, the mean
number of iterations is shown as a solid line with the interquartile interval overlaid as a ribbon.
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iterates within a 0.01 radius are excluded. In (a) and (b),
Adaptive GROUSE has greater conditional expected im-
provement than Non-adaptive GROUSE, especially for
determinant similarities less than one half. Non-adaptive
GROUSE rarely converged in (b) and hence its condi-
tional expected improvements stay below one. The two
approaches again perform similarly in (c). In all three
settings, the theoretical bound (8) of Lemma 1 closely
agrees with the conditional expected improvement when
ζt > 1/2 and is conservative when ζt < 1/2; initial
improvement is even better in practice than predicted.

Figure 3 shows, for various numbers of measure-
ments, the number of iterations required to pass through
two phases: first, to reach a determinant similarity of
ζt ≥ 1/2, and second, to go from there to a determinant
similarity of ζt ≥ ζ∗ = 0.99. Figure 3a illustrates that
Adaptive GROUSE generally requires fewer iterations to
pass through the first phase, and the benefit diminishes as
the number of measurements per time instant increases.
The second phase illustrated in Figure 3b takes a similar
number of iterations for the two approaches. Namely,
the adaptive approach is primarily helpful early on (in
the first phase) and especially so when the number of
measurements is small. In the second phase, the adaptive
and non-adaptive approaches have roughly the same
performance.

VI. DISCUSSION AND CONCLUSION

This paper shows that adaptive sensing improves the
convergence rate of the GROUSE online subspace es-
timation algorithm relative to using non-adaptive mea-
surements, especially when very few measurements are
available per time instant. However, the adaptive mea-
surement model assumed in this work, which requires the
ability to take arbitrary linear measurements, could be
unrealistic or infeasible in certain applications. In future
work we will extend the present analysis to the case of
entrywise sampling of input vectors. More generally, we
plan to extend our results to the constrained adaptive
sensing setting [14], where the measurement vectors
must come from a specified set. Finally, while this work
focused on the GROUSE subspace estimation algorithm,
the adaptive design proposed in this work might also
enhance the performance of other recently proposed
online subspace estimation and tracking algorithms [4]–
[6], [18].
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