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Can we (approximately) fill-in the missing entries?

(i.e., recommend movies to users)
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Leaderboard

Showing Test Score. Click here to show quiz score

Rank Team Name Best Test Score % Improvement Best Submit Time
nd Priz RMSE Winning Team: BellKor's Pragmatic Chac ‘
1 BellKor's Pragmatic Chaos 0.8567 10.06 2009-07-26 18:18:28
2 The Ensemble 0.8567 10.06 2009-07-26 18:38:22
3 Grand Prize Team 0.8582 9.90 2009-07-10 21:24:40
4 Opera Solutions and Vandelay United 0.8588 9.84 2009-07-10 01:12:31
5 Vandelay Industries ! 0.8591 9.81 2009-07-10 00:32:20
6 PragmaticTheory 0.8594 9.77 2009-06-24 12:06:56
7 BellKor in BigChaos 0.8601 9.70 2009-05-13 08:14:09
8 Dace 0.8612 9.59 2009-07-24 17:18:43
9 Feeds?2 0.8622 9.48 2009-07-12 13:11:51
10 BigChaos 0.8623 9.47 2009-04-07 12:33:59
1 Opera Solutions 0.8623 9.47 2009-07-24 00:34:07
12 BellKor 0.8624 9.46 2009-07-26 17:19:11

nttp://www.nettlixprize.com/leaderboard.ht
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Low-Rank Matrix Completion (LRMC)

Let X be an approximately low-rank matrix

/ / /
X A upvy + usgv, + -+ - + upv,

X zE' + f '+...+E'3

\ ) \ ) \ )
| | |

drama comedy sports

Model: We are given random observations
Xi; forall (i,j) € Q (observation set)

Is there an efficient algorithm to recover X?




Successful Applications of LRMC

e Recommender systems (“Netflix prize”)

¢ Imaging: denoising, reconstruction in medical,

nyperspectral imaging.

e Anomaly detection in network flows

e Source localization and target tracking in radar and sonar

e Computer vision: background subtraction, object tracking,
and to represent a single scene under varying illuminations

e Environmental monitoring of soil and crop conditions, water
contamination, and air pollution, also sensor calibration

e Seismological activity and modal estimation in materials
and manmade structures

...and so on
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Implies we need O(nr) samples for LRMC to even be possible.

State-of-the-art algorithms  provably complete low-rank
matrices from O(nr polylog(n)) random samples.



LRMC Sampling Complexity

Degrees of freedom (DoF) of an n x s rank r matrix:

n
n |” DoF = nr + r(n-r)
~ 2nr
S N —
r n-r

Implies we need O(nr) samples for LRMC to even be possible.

State-of-the-art algorithms  provably complete low-rank
matrices from O(nr polylog(n)) random samples.

Today will we talk about one algorithm:

Nuclear norm minimization
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Approximately how many observations per column
are necessary to recover a low-rank matrix?
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Assume n x n rank r matrix is determined by 2nr parameters.

if low-rank:

2r < n




What is the nuclear norm of a 1x1 matrix x?
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What is the nuclear norm of a 1x1 matrix x?

||z
X
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A) Nothing. The algorithm found a low-rank solution.

Bug in the implementation of SVT.

Algorithm has not converged—run more iterations.

)
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C) Bad initialization.
D)
E)

Ran too many iterations.
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A) Nothing. The algorithm found a low-rank solution.

B) Bug in the implementation of SVT.
D) Algorlthm has not converged—run more |terat|ons |
E) Ran too many iterations.”




CSP Seminar:
"Non-Linear Models for Matrix Completion™
Greg Ongie
Date: Thursday, November 9, 2017

Time: 4.00pm
Location: 1005 EECS

Can we complete a partially observed matrix X
assuming its columns lie on an algebraic variety V?
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