551: Guest Lecture Low-rank Matrix Completion

Greg Ongie, Postdoctoral Fellow EECS Department University of Michigan 11/7/2017

Movies

Can we (approximately) fill-in the missing entries? (i.e., recommend movies to users)

Netflix Prize

Competition in 2006-2009

Leaderboard

Showing Test Score. Click here to show quiz score

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time			
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos							
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28			
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22			
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40			
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31			
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20			
6	<u>PragmaticTheory</u>	0.8594	9.77	2009-06-24 12:06:56			
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09			
8	<u>Dace</u>	0.8612	9.59	2009-07-24 17:18:43			
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51			
10	<u>BigChaos</u>	0.8623	9.47	2009-04-07 12:33:59			
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07			
12	BellKor	0.8624	9.46	2009-07-26 17:19:11			

http://www.netflixprize.com/leaderboard.html

Netflix Prize

Competition in 2006-2009

Leaderboard

Showing Test Score. Click here to show quiz score

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time			
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos							
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28			
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22			
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40			
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31			
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20			
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56			
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09			
8	Dace_	0.8612	9.59	2009-07-24 17:18:43			
9 ¦	Feeds2	0.8622	9.48	2009-07-12 13:11:51			
10	<u>BigChaos</u>	0.8623	9.47	2009-04-07 12:33:59			
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07			
12	BellKor	0.8624	9.46	2009-07-26 17:19:11			

- Winning team used complex combination of methods
- Simple technique gets within 3% of top score in RMSE:

Low-rank matrix completion

http://www.netflixprize.com/leaderboard.html

$$X\approx u_1v_1'+u_2v_2'+\cdots+u_rv_r'$$

$$X\approx u_1v_1'+u_2v_2'+\cdots+u_rv_r'$$

$$X\approx u_1v_1'+u_2v_2'+\cdots+u_rv_r'$$

$$X\approx u_1v_1'+u_2v_2'+\cdots+u_rv_r'$$

$$X\approx u_1v_1'+u_2v_2'+\cdots+u_rv_r'$$

Let X be an approximately low-rank matrix

$$X\approx u_1v_1'+u_2v_2'+\cdots+u_rv_r'$$

Model: We are given random observations

$$X_{i,j}$$
 for all $(i,j) \in \Omega$ (observation set)

Let X be an approximately low-rank matrix

$$X\approx u_1v_1'+u_2v_2'+\cdots+u_rv_r'$$

Model: We are given random observations

$$X_{i,j}$$
 for all $(i,j) \in \Omega$ (observation set)

Is there an efficient algorithm to recover X?

Successful Applications of LRMC

- Recommender systems ("Netflix prize")
- Imaging: denoising, reconstruction in medical, hyperspectral imaging.
- Anomaly detection in network flows
- Source localization and target tracking in radar and sonar
- Computer vision: background subtraction, object tracking, and to represent a single scene under varying illuminations
- Environmental monitoring of soil and crop conditions, water contamination, and air pollution, also sensor calibration
- Seismological activity and modal estimation in materials and manmade structures

LRMC Sampling Complexity

Degrees of freedom (DoF) of an $n \times s$ rank r matrix:

LRMC Sampling Complexity

Degrees of freedom (DoF) of an $n \times s$ rank r matrix:

Implies we need O(nr) samples for LRMC to even be possible.

State-of-the-art algorithms provably complete low-rank matrices from $O(nr \operatorname{polylog}(n))$ random samples.

LRMC Sampling Complexity

Degrees of freedom (DoF) of an $n \times s$ rank r matrix:

Implies we need O(nr) samples for LRMC to even be possible.

State-of-the-art algorithms provably complete low-rank matrices from $O(nr \operatorname{polylog}(n))$ random samples.

Today will we talk about one algorithm:

Nuclear norm minimization

Clicker Questions

Approximately how many observations per column are necessary to recover a low-rank matrix?

Assume n x n rank r matrix is determined by 2nr parameters.

- A) n
- B) 2r
- C) 2n
- D) nr
- E) r²

Approximately how many observations per column are necessary to recover a low-rank matrix?

Assume n x n rank r matrix is determined by 2nr parameters.

Approximately how many observations per column are necessary to recover a low-rank matrix?

Assume n x n rank r matrix is determined by 2nr parameters.

if low-rank:

$$2r \ll n$$

What is the nuclear norm of a 1x1 matrix x?

$$|||x|||_* = ?$$

scalar / 1x1 matrix

- A) x
- B) Heaviside(x)
- C) IxI
- D) max(0,x)
- E) x²

What is the nuclear norm of a 1x1 matrix x?

$$|||x|||_* = ?$$

scalar / 1x1 matrix

- A) x
- B) Heaviside(x)
- C) IxI
- D) max(0,x)
- E) x²

What is the nuclear norm of a 1x1 matrix x?

scalar / 1x1 matrix

A) x
B) Heaviside(x)
C) Ixl
D) max(0,x)
E) x²

$$|||x|||_* = |x|$$

non-smooth at origin

What went wrong with the ISTA algorithm?

- A) Nothing. The algorithm found a low-rank solution.
- B) Bug in the implementation of SVT.
- C) Bad initialization.
- D) Algorithm has not converged—run more iterations.
- E) Ran too many iterations.

What went wrong with the ISTA algorithm?

- A) Nothing. The algorithm found a low-rank solution.
- B) Bug in the implementation of SVT.
- C) Bad initialization.
- D) Algorithm has not converged—run more iterations.
- E) Ran too many iterations.

CSP Seminar:

"Non-Linear Models for Matrix Completion" Greg Ongie

Date: Thursday, November 9, 2017

Time: 4:00pm

Location: 1005 EECS

Can we complete a partially observed matrix X assuming its columns lie on an algebraic variety V?

