
Low-rank Matrix Completion: Guest Lecture for 551

Greg Ongie, University of Michigan

November 7, 2017

1 Optimization Formulation

• Let Y = [Yi,j ] ∈ Rm×n. Suppose we observe Yi,j for all (i, j) ∈ Ω where Ω ⊂ {1, ...,m} ×
{1, ..., n} is an index set of the obsered locations of size s.

• Notation: Define the linear projection operator PΩ : Rm×n → Rs by

PΩ(X) = [Xi,j ](i,j)∈Ω (vector of entries in Ω)

2× 2 matrix example:

Y =

[
2 5
6 7

]
, Ω = {(1, 1), (1, 2), (2, 2)} '

[
1 1
0 1

]
︸ ︷︷ ︸

“sampling mask”

, PΩ(Y) =

2
5
7


Allows us to write observations constraints compactly:

PΩ(X) = PΩ(Y)

if and only if
Xi,j = Yi,j for all (i, j) ∈ Ω.

• Low-rank matrix completion problem:
Find a matrix X̂ such that
(1) X̂ is low-rank
(2) PΩ(X̂) = PΩ(Y)

• “Ideal” Optimization Formulation:

X̂ = arg min
X

rank(X) subject to PΩ(X) = PΩ(Y). (rank-min)

In words, find the matrix of minimum rank that agrees with the observed entries.

• Challenges this approach:

– Rank functional is non-convex.

– No fast algorithm to solve this problem (“NP-hard”).

1



– In practice, often “noise” in samples: PΩ(X) ≈ PΩ(X0).

• Solution is to “relax” the problem: Replace rank(X) with nuclear norm, and include data-fit
term

X̂ = arg min
X

‖PΩ(X)− PΩ(Y)‖2︸ ︷︷ ︸
“data fit”

+ β‖X‖∗︸ ︷︷ ︸
“regularizer”

(NN-min)

• Recall: From Nov. 2 class, closely related matrix denoising problem:

X̂ = arg min
X

1

2
‖X−Y‖2F︸ ︷︷ ︸
“data fit”

+ β‖X‖∗︸ ︷︷ ︸
“regularizer”

(SVST)

which has closed form solution

X̂ = SV ST (Y, β) =

r∑
k=1

[σk − β]+ukv
′
k

where u1, ...,ur and v1, ...,vr are the left and right singular vectors of Y. Only difference
with (NN-min) is the linear operator PΩ inside Frobenius norm. This penalizes data-fit only
on observed set.

2 Iterative Soft-Thresholding Algorithm (ISTA)

• We will derive an efficient algorithm to solve (NN-min) that combines gradient descent with
singular value soft-thresholding.

• Note: Gradient descent can also be applied to matrix functions f : Rn×m → R. We say f(X)
is smooth if all partial derivatives ∂f(X)/∂Xi,j exist, and we write ∇f(X) for the matrix of
partial derivatives. I will move back and forth between matrix and vector functions and their
gradients with the understanding that they are equivalent up to “reshaping”.

• Recall: If f : Rn → R is a smooth function we can solve

min
x
f(x)

by gradient descent : initialize with x0 ∈ Rm×n and for all k = 0, 1, ... iterate

xk+1 = xk − α∇f(xk)

Typically the choice of α depends on the Lipschitz constant L of ∇f(x).
Example: quadratic f

f(x) = ‖Ax− b‖2

has Lipschitz gradient L = 2‖A′A‖2, and α ∈ (0, 1/‖A′A‖2) ensures convergence of gradient
descent to the global optimum.

2



• We will extend gradient descent to solve problems of the type

min
x

f(x)︸︷︷︸
smooth

+ g(x)︸︷︷︸
non-smooth

Why? Because (NN-min) has this form:

min
X
‖PΩ(X)− PΩ(X)‖2F︸ ︷︷ ︸

smooth (quadratic)

+ β‖X‖∗︸ ︷︷ ︸
non-smooth

• Key idea: The gradient descent step xk+1 = xk − α∇f(xk) is equivalent to

xk+1 = arg min
x

f(xk) + 〈∇f(x),x− xk〉︸ ︷︷ ︸
first-order Taylor expansion

+
1

2α
‖x− xk‖2


• Interpretation: we are “majorizing” the function f(x) with quadratic surrogate function,

and minimizing the surrogate function at each iteration. [Picture]

Proof. Removing terms that do not depend on x we have

xk+1 = arg min
x

{
〈∇f(xk),x〉+

1

2α
‖x− xk‖2

}
= arg min

x

{
〈∇f(xk),x〉+

1

2α
‖x‖2 − 1

α
〈x,xk〉+

1

2α
‖xk‖2

}
= arg min

x

{
1

2α
‖x‖2 − 1

α
〈x,xk − α∇f(xk)〉

}
= arg min

x

{
1

2α
‖x− (xk − α∇f(xk))‖2

}
.

The minimum happens where the objective is 0, hence xk+1 = xk − α∇f(xk).

• Extend this new interpretation to minimize sum of smooth and non-smooth term:
solve

min
x
f(x) + g(x)

by iterating

xk+1 = arg min
x

{
f(xk) + 〈∇f(x),x− xk〉+

1

2α
‖x− xk‖2 + g(x)

}
= arg min

x

{
1

2α
‖x− (xk − α∇f(x))‖2 + g(x)

}
.

Or, put compactly,

yk = xk − α∇f(xk)

xk+1 = arg min
x

{
1

2α
‖x− yk‖2 + g(x)

}
.

3



• Algorithm also guaranteed to converge to global minimum (for convex objectives) under
similar conditions on α as for gradient descent. Typically choose α = 1

L , where L is the
Lipschitz constant of ∇f(x).

• Now apply this to matrix completion problem (NN-min):
f(X) = 1

2‖PΩ(X)− PΩ(X0)‖2 and g(X) = β ‖X‖∗,

– step-size α: We can re-write f as quadratic in the variable x = vec(X), the vectorized
matrix, as f̃(x) = 1

2‖Ax− b‖2 where A contains rows of the mn×mn identity matrix,
and A′A = diag(1Ω) where 1Ω[i, j] = 1 if (i, j) ∈ Ω and 0 elsewhere. Therefore L =
‖A′A‖ = 1, and we can choose the step-size α = 1

L = 1.

– Yk update: Again, let xk = vec(Xk), then

∇f̃(xk) = A′(Axk − b) = A′Axk −A′b

Re-writing this in a matrix variable Xk, we have:

∇f(Xk) = P∗ΩPΩ(Xk)− P∗ΩPΩ(Y)

where P∗Ω : RK → Rm×n maps a vector of samples to the matrix with those samples at
locations Ω and zeros elsewhere. Hence we have

Yk = Xk − α∇f(Xk) = [Xk − P∗ΩPΩ(Xk)] + P∗ΩPΩ(Y).

We can also write this as:

[Yk]i,j =

{
[Xk]i,j if (i, j) 6∈ Ω

[Y]i,j if (i, j) ∈ Ω
,

i.e., we set the entries of Yk equal to the entries of Y on the observation set Ω, and
equal the entries of Xk elsewhere.

– Xk+1 update: This becomes

Xk+1 = arg min
X

1

2
‖X−Yk‖2F + β ‖X‖∗

Exactly soft-thresholding of singular values! Easy to implement.

– Final Iterative Soft-thresholding Algorithm (ISTA) for (NN-min):
initialize X0 ∈ Rm×n and for all k = 0, 1, 2, ... iterate

Yk = Xk

PΩ(Yk)← PΩ(Y) (put in known samples)

Xk+1 = SV ST (Yk, β)

4



3 Fast Iterative Soft-Thresholding Algorithm (FISTA)

• Modification of ISTA to allow for Nesterov acceleration:
FISTA: Set t0 = 1, and for all k = 0, 1, 2, ... iterate

Ŷk = Yk

PΩ(Ŷk)← PΩ(Y) (put in known samples)

Xk+1 = SV ST (Ŷk, β)

tk+1 =
1 +

√
1 + 4t2k

2

Yk+1 = Xk +
tk − 1

tk+1
(Xk −Xk+1)

5


	Optimization Formulation
	Iterative Soft-Thresholding Algorithm (ISTA)
	Fast Iterative Soft-Thresholding Algorithm (FISTA)

