Low-rank Matrix Completion: Guest Lecture for 551

Greg Ongie, University of Michigan

November 7, 2017

1 Optimization Formulation

- Let $\mathbf{Y} = [Y_{i,j}] \in \mathbb{R}^{m \times n}$. Suppose we observe $Y_{i,j}$ for all $(i, j) \in \Omega$ where $\Omega \subset \{1, ..., m\} \times \{1, ..., n\}$ is an index set of the observed locations of size s.
- Notation: Define the linear projection operator $\mathcal{P}_{\Omega} : \mathbb{R}^{m \times n} \to \mathbb{R}^{s}$ by

 $\mathcal{P}_{\Omega}(\mathbf{X}) = [X_{i,j}]_{(i,j)\in\Omega}$ (vector of entries in Ω)

 2×2 matrix example:

$$\mathbf{Y} = \begin{bmatrix} 2 & 5\\ 6 & 7 \end{bmatrix}, \quad \Omega = \{(1,1), (1,2), (2,2)\} \simeq \underbrace{\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}}_{\text{"sampling mask"}}, \quad \mathcal{P}_{\Omega}(\mathbf{Y}) = \begin{bmatrix} 2\\ 5\\ 7 \end{bmatrix}$$

Allows us to write observations constraints compactly:

$$\mathcal{P}_{\Omega}(\mathbf{X}) = \mathcal{P}_{\Omega}(\mathbf{Y})$$

if and only if

$$X_{i,j} = Y_{i,j}$$
 for all $(i,j) \in \Omega$.

- Low-rank matrix completion problem:
 - Find a matrix $\hat{\mathbf{X}}$ such that
 - (1) $\mathbf{\hat{X}}$ is low-rank
 - (2) $\mathcal{P}_{\Omega}(\widehat{\mathbf{X}}) = \mathcal{P}_{\Omega}(\mathbf{Y})$
- "Ideal" Optimization Formulation:

$$\hat{\mathbf{X}} = \underset{\mathbf{X}}{\operatorname{arg\,min}} \operatorname{rank}(\mathbf{X}) \text{ subject to } \mathcal{P}_{\Omega}(\mathbf{X}) = \mathcal{P}_{\Omega}(\mathbf{Y}).$$
(rank-min)

In words, find the matrix of minimum rank that agrees with the observed entries.

- Challenges this approach:
 - Rank functional is non-convex.
 - No fast algorithm to solve this problem ("NP-hard").

– In practice, often "noise" in samples: $\mathcal{P}_{\Omega}(\mathbf{X}) \approx \mathcal{P}_{\Omega}(\mathbf{X}_0)$.

• Solution is to "relax" the problem: Replace $rank(\mathbf{X})$ with nuclear norm, and include data-fit term

$$\widehat{\mathbf{X}} = \underset{\mathbf{X}}{\operatorname{arg\,min}} \underbrace{\|\mathcal{P}_{\Omega}(\mathbf{X}) - \mathcal{P}_{\Omega}(\mathbf{Y})\|^{2}}_{\text{"data fit"}} + \underbrace{\beta \|\mathbf{X}\|_{*}}_{\text{"regularizer"}}$$
(NN-min)

• Recall: From Nov. 2 class, closely related matrix denoising problem:

$$\widehat{\mathbf{X}} = \arg\min_{\mathbf{X}} \underbrace{\frac{1}{2} \|\mathbf{X} - \mathbf{Y}\|_{F}^{2}}_{\text{"data fit"}} + \underbrace{\beta \|\mathbf{X}\|_{*}}_{\text{"regularizer"}}$$
(SVST)

which has closed form solution

$$\widehat{\mathbf{X}} = SVST(\mathbf{Y}, \beta) = \sum_{k=1}^{r} [\sigma_k - \beta]_+ \mathbf{u}_k \mathbf{v}'_k$$

where $\mathbf{u}_1, ..., \mathbf{u}_r$ and $\mathbf{v}_1, ..., \mathbf{v}_r$ are the left and right singular vectors of \mathbf{Y} . Only difference with (NN-min) is the linear operator \mathcal{P}_{Ω} inside Frobenius norm. This penalizes data-fit only on observed set.

2 Iterative Soft-Thresholding Algorithm (ISTA)

- We will derive an efficient algorithm to solve (NN-min) that combines gradient descent with singular value soft-thresholding.
- Note: Gradient descent can also be applied to matrix functions $f : \mathbb{R}^{n \times m} \to \mathbb{R}$. We say $f(\mathbf{X})$ is smooth if all partial derivatives $\partial f(\mathbf{X})/\partial X_{i,j}$ exist, and we write $\nabla f(\mathbf{X})$ for the matrix of partial derivatives. I will move back and forth between matrix and vector functions and their gradients with the understanding that they are equivalent up to "reshaping".
- Recall: If $f : \mathbb{R}^n \to \mathbb{R}$ is a smooth function we can solve

$$\min_{\mathbf{x}} f(\mathbf{x})$$

by gradient descent: initialize with $\mathbf{x}_0 \in \mathbb{R}^{m \times n}$ and for all k = 0, 1, ... iterate

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)$$

Typically the choice of α depends on the *Lipschitz constant* L of $\nabla f(\mathbf{x})$. Example: quadratic f

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

has Lipschitz gradient $L = 2 \|\mathbf{A}'\mathbf{A}\|_2$, and $\alpha \in (0, 1/\|\mathbf{A}'\mathbf{A}\|_2)$ ensures convergence of gradient descent to the global optimum.

• We will extend gradient descent to solve problems of the type

$$\min_{\mathbf{x}} \underbrace{f(\mathbf{x})}_{\text{smooth}} + \underbrace{g(\mathbf{x})}_{\text{non-smooth}}$$

Why? Because (NN-min) has this form:

$$\min_{\mathbf{X}} \underbrace{\|\mathcal{P}_{\Omega}(\mathbf{X}) - \mathcal{P}_{\Omega}(\mathbf{X})\|_{F}^{2}}_{\text{smooth (quadratic)}} + \underbrace{\beta \|\mathbf{X}\|_{*}}_{\text{non-smooth}}$$

• Key idea: The gradient descent step $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)$ is equivalent to

$$\mathbf{x}_{k+1} = \operatorname*{arg\,min}_{x} \left\{ \underbrace{f(\mathbf{x}_{k}) + \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{x}_{k} \rangle}_{\text{first-order Taylor expansion}} + \frac{1}{2\alpha} \|\mathbf{x} - \mathbf{x}_{k}\|^{2} \right\}$$

• Interpretation: we are "majorizing" the function $f(\mathbf{x})$ with quadratic surrogate function, and minimizing the surrogate function at each iteration. [Picture]

Proof. Removing terms that do not depend on \mathbf{x} we have

$$\begin{aligned} \mathbf{x}_{k+1} &= \operatorname*{arg\,min}_{\mathbf{x}} \left\{ \langle \nabla f(\mathbf{x}_k), \mathbf{x} \rangle + \frac{1}{2\alpha} \| \mathbf{x} - \mathbf{x}_k \|^2 \right\} \\ &= \operatorname*{arg\,min}_{\mathbf{x}} \left\{ \langle \nabla f(\mathbf{x}_k), \mathbf{x} \rangle + \frac{1}{2\alpha} \| \mathbf{x} \|^2 - \frac{1}{\alpha} \langle \mathbf{x}, \mathbf{x}_k \rangle + \frac{1}{2\alpha} \| \mathbf{x}_k \|^2 \right\} \\ &= \operatorname*{arg\,min}_{\mathbf{x}} \left\{ \frac{1}{2\alpha} \| \mathbf{x} \|^2 - \frac{1}{\alpha} \langle \mathbf{x}, \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k) \rangle \right\} \\ &= \operatorname*{arg\,min}_{\mathbf{x}} \left\{ \frac{1}{2\alpha} \| \mathbf{x} - (\mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)) \|^2 \right\}. \end{aligned}$$

The minimum happens where the objective is 0, hence $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)$.

- Extend this new interpretation to minimize sum of smooth and non-smooth term: solve

$$\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{x})$$

by iterating

$$\mathbf{x}_{k+1} = \operatorname*{arg\,min}_{x} \left\{ f(\mathbf{x}_{k}) + \langle \nabla f(\mathbf{x}), \mathbf{x} - \mathbf{x}_{k} \rangle + \frac{1}{2\alpha} \|\mathbf{x} - \mathbf{x}_{k}\|^{2} + g(\mathbf{x}) \right\}$$
$$= \operatorname*{arg\,min}_{x} \left\{ \frac{1}{2\alpha} \|\mathbf{x} - (\mathbf{x}_{k} - \alpha \nabla f(\mathbf{x}))\|^{2} + g(\mathbf{x}) \right\}.$$

Or, put compactly,

$$\mathbf{y}_k = \mathbf{x}_k - \alpha \nabla f(\mathbf{x}_k)$$
$$\mathbf{x}_{k+1} = \arg\min_{\mathbf{x}} \left\{ \frac{1}{2\alpha} \|\mathbf{x} - \mathbf{y}_k\|^2 + g(\mathbf{x}) \right\}.$$

- Algorithm also guaranteed to converge to global minimum (for convex objectives) under similar conditions on α as for gradient descent. Typically choose $\alpha = \frac{1}{L}$, where L is the Lipschitz constant of $\nabla f(\mathbf{x})$.
- Now apply this to matrix completion problem (NN-min): $f(\mathbf{X}) = \frac{1}{2} \| \mathcal{P}_{\Omega}(\mathbf{X}) - \mathcal{P}_{\Omega}(\mathbf{X}_0) \|^2$ and $g(X) = \beta \| \mathbf{X} \|_*$,
 - step-size α : We can re-write f as quadratic in the variable $x = \operatorname{vec}(\mathbf{X})$, the vectorized matrix, as $\tilde{f}(\mathbf{x}) = \frac{1}{2} \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$ where \mathbf{A} contains rows of the $mn \times mn$ identity matrix, and $\mathbf{A}'\mathbf{A} = \operatorname{diag}(\mathbf{1}_{\Omega})$ where $\mathbf{1}_{\Omega}[i, j] = 1$ if $(i, j) \in \Omega$ and 0 elsewhere. Therefore $L = \|\mathbf{A}'\mathbf{A}\| = 1$, and we can choose the step-size $\alpha = \frac{1}{L} = 1$.
 - \mathbf{Y}_k update: Again, let $\mathbf{x}_k = \text{vec}(\mathbf{X}_k)$, then

$$\nabla \tilde{f}(\mathbf{x}_k) = \mathbf{A}'(\mathbf{A}\mathbf{x}_k - \mathbf{b}) = \mathbf{A}'\mathbf{A}\mathbf{x}_k - \mathbf{A}'\mathbf{b}$$

Re-writing this in a matrix variable \mathbf{X}_k , we have:

$$\nabla f(\mathbf{X}_k) = \mathcal{P}_{\Omega}^* \mathcal{P}_{\Omega}(\mathbf{X}_k) - \mathcal{P}_{\Omega}^* \mathcal{P}_{\Omega}(\mathbf{Y})$$

where $\mathcal{P}_{\Omega}^* : \mathbb{R}^K \to \mathbb{R}^{m \times n}$ maps a vector of samples to the matrix with those samples at locations Ω and zeros elsewhere. Hence we have

$$\mathbf{Y}_k = \mathbf{X}_k - \alpha \nabla f(\mathbf{X}_k) = [\mathbf{X}_k - \mathcal{P}_{\Omega}^* \mathcal{P}_{\Omega}(\mathbf{X}_k)] + \mathcal{P}_{\Omega}^* \mathcal{P}_{\Omega}(\mathbf{Y}).$$

We can also write this as:

$$[\mathbf{Y}_k]_{i,j} = \begin{cases} [\mathbf{X}_k]_{i,j} & \text{if } (i,j) \notin \Omega\\ [\mathbf{Y}]_{i,j} & \text{if } (i,j) \in \Omega \end{cases}$$

i.e., we set the entries of \mathbf{Y}_k equal to the entries of \mathbf{Y} on the observation set Ω , and equal the entries of \mathbf{X}_k elsewhere.

 $- \mathbf{X}_{k+1}$ update: This becomes

$$\mathbf{X}_{k+1} = \operatorname*{arg\,min}_{\mathbf{X}} \frac{1}{2} \|\mathbf{X} - \mathbf{Y}_k\|_F^2 + \beta \|\mathbf{X}\|_*$$

Exactly soft-thresholding of singular values! Easy to implement.

– Final Iterative Soft-thresholding Algorithm (ISTA) for (NN-min): initialize $\mathbf{X}_0 \in \mathbb{R}^{m \times n}$ and for all $k = 0, 1, 2, \dots$ iterate

$$\begin{split} \mathbf{Y}_k &= \mathbf{X}_k \\ \mathcal{P}_{\Omega}(\mathbf{Y}_k) \leftarrow \mathcal{P}_{\Omega}(\mathbf{Y}) \quad \text{(put in known samples)} \\ \mathbf{X}_{k+1} &= SVST(\mathbf{Y}_k, \beta) \end{split}$$

3 Fast Iterative Soft-Thresholding Algorithm (FISTA)

• Modification of ISTA to allow for Nesterov acceleration: **FISTA:** Set $t_0 = 1$, and for all k = 0, 1, 2, ... iterate

$$\begin{aligned} \widehat{\mathbf{Y}}_{k} &= \mathbf{Y}_{k} \\ \mathcal{P}_{\Omega}(\widehat{\mathbf{Y}}_{k}) \leftarrow \mathcal{P}_{\Omega}(\mathbf{Y}) \quad \text{(put in known samples)} \\ \mathbf{X}_{k+1} &= SVST(\widehat{\mathbf{Y}}_{k}, \beta) \\ t_{k+1} &= \frac{1 + \sqrt{1 + 4t_{k}^{2}}}{2} \\ \mathbf{Y}_{k+1} &= \mathbf{X}_{k} + \frac{t_{k} - 1}{t_{k+1}} (\mathbf{X}_{k} - \mathbf{X}_{k+1}) \end{aligned}$$