Low-rank Matrix Completion: Guest Lecture for 551

Greg Ongie, University of Michigan

November 7, 2017

1 Optimization Formulation

e Let Y = [Y; ;] € R™*". Suppose we observe Y; ; for all (i,5) € Q where Q C {1,...,m} x
{1,...,n} is an index set of the obsered locations of size s.

e Notation: Define the linear projection operator Pq : R™*"™ — R® by
Pa(X) = [Xijlujyen (vector of entries in)

2 x 2 matrix example:

2 5 11 2
Y = , Q={(1,1),(1,2),(2,2)} ~ , Pa(Y)=5
6 7 0 1 .
“sampling mask”
Allows us to write observations constraints compactly:
Pa(X) = Pa(Y)
if and only if
XL]' = Y;’j for all (’L,j) e Q.
e Low-rank matrix completion problem:
Find a matrix X such that
(1) X is low-rank
(2) Pa(X) = Pa(Y)
e “Ideal” Optimization Formulation:
X = argmin rank(X) subject to Pqo(X) = Po(Y). (rank-min)

X

In words, find the matriz of minimum rank that agrees with the observed entries.
e Challenges this approach:

— Rank functional is non-convex.

— No fast algorithm to solve this problem (“NP-hard”).

— In practice, often “noise” in samples: Pq(X) =~ Pq(Xp).

e Solution is to “relax” the problem: Replace rank(X) with nuclear norm, and include data-fit

term
X = argmin ||Po(X) — Po(Y) I+ BIX|. (NN-min)
X ~——
“data fit” “regularizer”

e Recall: From Nov. 2 class, closely related matrix denoising problem:

% !
X =argmin - [|X - Y|+ BX]« (SVST)
X L/_/ vV
“data fit” “regularizer”

which has closed form solution

r

X = SVST(Y,B8) =Y |0 — Blsupvj
k=1

where uy,...,u, and vy,...,v, are the left and right singular vectors of Y. Only difference
with (NN-min) is the linear operator P inside Frobenius norm. This penalizes data-fit only
on observed set.

2 Iterative Soft-Thresholding Algorithm (ISTA)

e We will derive an efficient algorithm to solve (NN-min) that combines gradient descent with
singular value soft-thresholding.

e Note: Gradient descent can also be applied to matrix functions f : R"*™ — R. We say f(X)
is smooth if all partial derivatives 0f(X)/0X; ; exist, and we write V f(X) for the matrix of
partial derivatives. I will move back and forth between matrix and vector functions and their
gradients with the understanding that they are equivalent up to “reshaping”.

e Recall: If f: R" — R is a smooth function we can solve
min f(x)
by gradient descent: initialize with xg € R™*™ and for all K = 0,1, ... iterate

X1 = Xk — aV f(xy)

Typically the choice of a depends on the Lipschitz constant L of V f(x).
Example: quadratic f
f(x) = |[Ax —b]f?

has Lipschitz gradient L = 2||A’A||2, and « € (0,1/||A’A||2) ensures convergence of gradient
descent to the global optimum.

e We will extend gradient descent to solve problems of the type

min f(x) + g(x)
X ~~
smooth non-smooth

Why? Because (NN-min) has this form:

min [Po(X) = Pa(X)lIE + BI1X
——

smooth (quadratic) non-smooth

e Key idea: The gradient descent step xx11 = X — aV f(x) is equivalent to

. 1
Xpy1 = argmin ¢ f(xg) + (Vf(x),x—xk>+—2a\|x—xk||2
X

first-order Taylor expansion

e Interpretation: we are “majorizing” the function f(x) with quadratic surrogate function,
and minimizing the surrogate function at each iteration. [Picture]

Proof. Removing terms that do not depend on x we have
. 1 2
X1 = argmin § (V(x4), %) + 5 |[x = x|
x «

. 1 1 1
= argmin { (V£ 6x0).)+ g xl? = %o + 5l

X a
= arg min iHXH2 — l(X xi — oV f(xk))
- gx 20 o\ k k

— argmin { 5 x - (o~ aV /G|

The minimum happens where the objective is 0, hence x;11 = x;, — aV f(xx). O

e Extend this new interpretation to minimize sum of smooth and non-smooth term:
solve

min f(x) + g(x)

by iterating
Xpy1 = arg;nin {f(xk) +(Vf(x),x —xk) + i”x — x|+ g(x)}
~argin { L~ (o~ aV I+ 9030}
Or, put compactly,
Y& =X — aV f(x)

) 1 9
Xj41 = arg min 2—||x —yil©+9(x)¢.
" «

3

e Algorithm also guaranteed to converge to global minimum (for convex objectives) under
similar conditions on « as for gradient descent. Typically choose a = %, where L is the
Lipschitz constant of V f(x).

e Now apply this to matrix completion problem (NN-min):
F(X) = 5lIPa(X) = Pa(Xo)|* and g(X) = 8| X].,

— step-size a: We can re-write f as quadratic in the variable x = vec(X), the vectorized
matrix, as f(x) = %HAX — b||? where A contains rows of the mn x mn identity matrix,
and A’A = diag(1lg) where 1q[i,j] = 1 if (¢,5) € Q and 0 elsewhere. Therefore L =
|A’A| = 1, and we can choose the step-size o = 7 = 1.

— Y update: Again, let x;, = vec(Xy), then

Vf(xp) = A'(Ax; —b) = A’Ax;, — A'b
Re-writing this in a matrix variable Xy, we have:

Vf(Xk) = PaPa(Xk) = PoPa(Y)

where P : RE — R™*™ maps a vector of samples to the matrix with those samples at
locations {2 and zeros elsewhere. Hence we have

Y =X, — aVf(Xy) = [Xi — PGPa(Xe)] + PoPa(Y).

We can also write this as:

Vi, = {[Xk]m i (0,7) £ 9
[Y];; if (4,5) € Q

i.e., we set the entries of Y equal to the entries of Y on the observation set {2, and

equal the entries of X}, elsewhere.

— Xg+1 update: This becomes
1 2
Xi1 = argmin g |X = Yal[p+ 8 Xl

Exactly soft-thresholding of singular values! Easy to implement.

— Final Iterative Soft-thresholding Algorithm (ISTA) for (NN-min):
initialize X € R™*™ and for all £ =0,1,2, ... iterate

Y, =Xy
Pa(Yy) < Pa(Y) (put in known samples)
Xpi1 = SVST(Yy, B)

3 Fast Iterative Soft-Thresholding Algorithm (FISTA)

e Modification of ISTA to allow for Nesterov acceleration:
FISTA: Set tg =1, and for all £ =0,1,2, ... iterate

Y=Y,
Po(Yy) < Po(Y) (put in known samples)
X1 = SVST(Y,)
14 /1+48F
tht1 = B E—

tr—1
Y1 =X +

(X — Xgt1)
k41

	Optimization Formulation
	Iterative Soft-Thresholding Algorithm (ISTA)
	Fast Iterative Soft-Thresholding Algorithm (FISTA)

