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Machine learning in biomedical imaging

Most obvious place for machine learning in post-processing

reconstructed
images interpretation

(classification
o] g
regression)

Tumor:
Yes or No?



Deep learning in medical image analysis

Deep learning methods achieve
state-of-the-art results on a wide
variety of image analysis tasks:

e mammography mass classification

e segmentation of lesions in the brain

* |eak detection in airway tree segmentation
* diabetic retinopathy classification

e prostate classification

* |ung nodule classification

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Survey Paper
A survey on deep learning in medical image analysis @Cmm

Geert Litjens*, Thijs Kooi Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio,
Francesco Ciompi, Mohsen Ghafoorian, Jeroen A\W.M. van der Laak Bram van Ginneken,
Clara I. Sanchez

Diagnostic Image Analysis Group, Radboud University Medical Center, Nijmegen, The Netherlands




Machine learning for image recon?

Another (initially less obvious?) place for machine learning: image recon

raw data images

ML-based
image
reconstruction

L

Possibly easier (than diagnosis) due to lower bar:

* current reconstruction methods based on simplistic image models
* human eyes are better at detection (tumor vs. no tumor)
than they are at converting raw data to images

E “‘B ?ﬁ% ;f £ % EEE THANSACTIONS ON MEDICAL IMAGING. VOL. 37, NO. 6, JUNE 2018 1239
. ~ - ~ -~

Image Reconstruction Is a New Frontier
of Machine Learning

Ge Wang', Fellow, IEEE, Jong Chu Ye™, Senior Member, IEEE, Klaus Mueller~, Senior Member, IEEE,

and Jeffre* A_ Fessler | Fallow. IEEE



Outline:

|.  Deep learning for biomedical image analysis (60 min)
1. The CNN zoo
2. Image classification/detection tasks
3. Image segmentation with the U-net

Il. Deep learning for medical image reconstruction (60 min)
1. Medical image reconstruction basics
2. Learning to “enhance”
3. Training generative models
4. Unrolling of optimization algorithms



Part |
Deep learning for
biomedical image analysis



The CNN Zoo




TensorFlow demo app

https://www.youtube.com/watch?v=40U4N6bAjR4
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Convolutional Neural Networks (CNN)
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CNN Example

8 Layer Architecture!
5 convolutional layers
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ImageNet Large Scale Visual Recognition

IMSAGENET

1000 categories
1.2M train images,

150,000 test images

motor scooter

Challenge (ILSVRC)

container ship | motor scooter | leapard
black widow lifeboat | | go-kart jaguar
cockroach amphibian moped | cheetah
tick fireboat | bumper car snow leopard

starfish drilling platform | golfcart

musnroom

erry Ma

vertible agaric daimatian
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus shire bullterrier indri
fire engine || dead-man’s-fingers currant howler monkey

dagascar cat
| monkey

http://image-net.org/challenges/LSVRC/


http://image-net.org/challenges/LSVRC/

CNN’s Then and Now
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CNN Layers
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CNN Image Features
1x2048
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~100 layers



ImageNet Challenge Winners

ImageNet Classification Error (Top 5)

| 2014 (VGG) 2014 Human 2015 (ResNet) 2016
(GoogleNet) (GooglLeNet-v4)

Year (winner) Figure: Gustav von Zitzewitz


https://www.researchgate.net/profile/Gustav_Von_Zitzewitz

AlexNet [Krizhevsky et al., 2012]

Mali
°n

48
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N Innovations:
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e Used dropout instead of explicit regularization
e Max pooling to reduce the size of the network
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ImageNet Challenge Winners

ImageNet Classification Error (Top 5)

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 Human 2015 (ResNet) 2016
(Gooshhht} (GooglLeNet-v4)

Year (winner) Figure: Gustav von Zitzewitz


https://www.researchgate.net/profile/Gustav_Von_Zitzewitz

VGGNet [Simonyan & Zisserman , 2012]

224 x 224 x3 224 x 224 x 64

, %5/'112x112_x.123
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Main Innovations:
* Far deeper: 16-19 convolutional layers
* More & smaller filters per layer
(e.g., rather than one 7x7 convolution use three 3x3 convolutions)



ImageNet Challenge Winners

ImageNet Classification Error (Top 5)

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) Human 2015 (ResNet) 2016
(GooglLeNet-v4)

Year (winner) Figure: Gustav von Zitzewitz


https://www.researchgate.net/profile/Gustav_Von_Zitzewitz

Inception-v1 (a.k.a. GoogleNet)
[Szegedy et al., 2014]

Filter
concatenation

actual

iInception block

‘E 3x3 convolutions

5x5 convolutions

1x1 convolutions

02 3] ‘E i ‘E }Eg—gi} 1x1 convolutions 4

4

?

Hi

Previous layer

1x1 convolutions 1x1 convolutions 3x3 max pooling

Main Innovations:

* Replace standard convolutional blocks with “inception block”
e Extracts features at multiple scales simultaneously
* No fully connected layers at the end — global average pooling



ImageNet Challenge Winners

ImageNet Classification Error (Top 5)

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) 2014
(GoogleNet)

Year (winner) Figure: Gustav von Zitzewitz


https://www.researchgate.net/profile/Gustav_Von_Zitzewitz

ResNets [He et al., 2014]

*
| HY weight laver\
Residual Network ? >l bl sl ia
cuaetwort 2 R F(x) lrelu
~~~~~ X
e weight layer . :
I ARRRE ght 1ay identity
Plain Network ! g utlgbigtigtlnh
SomEEEE F(x) +x
relu

Main Innovations:

e “Skip connections”

e Alleviates “vanishing gradients” issue of deep networks

e Faster training, fewer “hacks” needed (e.g., batch normalization)
e (Can train vastly deeper model, e.g., 100+ layers



ResNets—smoother loss landscapes

2-D projections of optimization landscape

{(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNel-56 with/without skip connections. The proposed filter
normalization scheme is used (o enable comparisons of sharpness/flainess between the two figures.

Visualizing the Loss Landscape of Neural Nets

Hao Li', Zheng Xu', Gavin Taylor?, Christoph Studer’, Tom Goldstein'
!University of Maryland, College Park *United States Naval Academy *Cornell University
{haoli,xuzh,tomg}@cs.umd.edu, taylor@usna.edu, studer@cornell.edu




ImageNet Challenge Winners

ImageNet Classification Error (Top 5)

2011 (XRCE) 2012 (AlexNet) 2013 (ZF) 2014 (VGG) Human 2015 (ResNet)
(GoogleNet)

Year (winner) Figure: Gustav von Zitzewitz


https://www.researchgate.net/profile/Gustav_Von_Zitzewitz

Inception-v3, -v4, -ResNet

CNN Layers

M Pool
- AqPooI

R

Main Innovations:

* |nception-v3 - Deeper, more efficient inception blocks

* |nception-v4 - *”

* |nception-ResNet - adds skip connections to inception blocks



.and many others

DenseNets FractalNets
[Huang et al., 20106] [Larsson et al., 2016]
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Fig. 1. A Squeeze-and-Excitation block.



What network architecture
should /use?

Short answer: It doesn’t matter too much!

Most state-of-the-art networks are
available in standard deep learning toolboxes

Task will dictate architecture

Constraints:

e Memory

e Size of training set
* Deployment



Challenges adapting deep CNN’s
to biomedical imaging problems

e Challenge 1: Limited Training Data

1M+ training examples ImageNet, biomedical imaging 100-10k typical

e How do we train a deep CNN without overfitting?
e Challenge 2: Complex Input Formats

* 3D volumes are commonplace in medical imaging

* multi-stream or multi-modal data (e.g., CT + MRI scans, text + image)

* measurement domain data (e.g., raw data from MRI scanner)
 Challenge 3: Tasks Beyond Classification

e Task is not classification/regression (or is inefficiently represented as such)

e Segmentation

* Image restoration/reconstruction



Biomedical image classification/detection




Application: Detecting skin cancer by
classification of lesions in photographs

Melignant

Mclanoma

Figure: [Esteva et al., 2017]



e Nature paper
[Esteva et al., 2017]

e Dataset of 129,450
clinical images

e 2.032 different
diseases.



Use Inception-v3 network

Sxin lesion image Deap corvolutional neural network (Inception v3) Training classes (757) Inference classes [varies by task)

® Acral-lent.ginous melanoma e
® Amelanctic melanoma & @ 92% malignant melanocytic lesion

@ [entigo melanoma

‘ \ : &
1 HH P R R P e -::{ } /8 II‘ =
: ‘ @ Blue nevus

@ Halo nevus & < 8% benign melanocylic lesion
Convolution @ Mongolian spot
AvgPool @ .-
MaxPool @
= Concat
= Dropout -
= Fully connected .
= Softmax -
CNN outperforms dermatologists!
da Carcinoma: 135 images Melanoma: 130 images Melanoma: 111 dermoscopy images
1 1 F g ey 1 I
o '
"""""""" 4 T
. z 2 z
£ = L =
0 . 7 » D |
— Algorithm: AUC =0.96 ' | — Algorithm: AUC = 0.94 ' — Algorithm: AUC = 0.91
®* Dermatologists (25) o * Dermatologists (22) o ®* Dermatologists (21) ;
¢ Average dermatologist | ® Average dermatologist « | ¢ Average dermatologist !
0 . 0 =3 0 '

0 s 2 | 1 0 1 0 — ; 1
Sensitivity Sensitivity Sensitivity



Transfer Learning

e (Estevaetal., 2017),
and nearly every other
biomedical image
classification approach
makes use of transfer learning

* |dea: Pre-train the network on
ImageNet, then fine-tune by
retraining on your own data.

e retrain only final layers

e retrain end-to-end

IMAGENET

QO O O O

e

“OC _ CEOM0
O N/

®

NEWLY INITIALIZED WEIGHTS OUTPUT
o 00
O <
OO

1000
Categories

O O

TRANSFER
LEARNING

Q O

Q0

PRETRAINED LEARNED OUTPUT
WEIGHTS WEIGHTS

O Choroidal
O

Neovascularizaticn
Diabetic Macular
Edeme

Drusen

Normal

Figure: (Kermany et al., 2018)




Application:
Lung nodule detection in chest CT scans

e Early stage lung
cancers detectable
via low-dose CT
scans

e Manifest as small
pulmonary nodules

e Demanding task for
radiologists:
~200-400 axial slices
per scan

Figure: http://www.diagnijmegen.nl/index.php/Lung _Cancer



http://www.diagnijmegen.nl/index.php/Lung_Cancer
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Potential for CNN'’s

JEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 14, NO. § DFCEMBER 1995 71

Artificial Convolution Neural Network Techniques
and Applications for Lung Nodule Detection

Shih-Chung B. Lo, Shyh-Liang A. Lou, Member, IEEE, Jyh-Shyan Lin, Matthew T. Freedman,
Minze V. Chien, Member, IEEE, and Seong K. Mun, Member, IEEE

Hiddea layer | Hidden layer 2
(N matrices) (M matrices)
Q ourput
L1& | Bel units
‘ detection for
Inpat e . 7 NO
units <« . ‘
; o . s
. . . detection [
. or
! . # / Vs
ya
[
{ LIMN
|
N groups M groups 'L/Fuily
of kemels of kernels e

Fig. 3.  Aruficial convolution neural network for detection of lung nodule.




Modern approaches

e Multi-scale approach [Shen et al., 2015]
e Trains 3 CNN'’s simultaneously on patches at different scales

__________________________________________________________

[TTT1

Feature Diagnostic Benign
Output Nodule
Convolutional
Neural » *
Networks Diagnostic
Malignant Nodule

——

Nodule CT Slices Nodule Patches , !Convolutional Networks Learning Classification

—————————————————————————————————————————————————————————————————————————————

W R e e e e e e e e e e e e e e e e e e e e e e e e e e e e e
WO R SR R R R R R R R R R R R SRR R SRR SRR R SRR R R AR e e e e e e

e Uses domain specific knowledge:
nodule sizes vary from <3 mm to >30 mm



Modern approaches

e Multi-view approach [Setio et al., 2016]
* Trains 9 CNN'’s simultaneously for 9 different views of nodule

FC+softmax

:

1

! nodule
: non—nodule
:

i

i

i

FCHsoftmax

V7 —

|

Ve —::EI~ FC+softmax
vy

fusion stage
< < <
Gy O
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Takeaway

Main innovations in classifying biomedical images with CNNs

are in “meta-architectures” that make use of domain specific knowledge
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Biomedical Image Segmentation
with the U-net




What is segmentation?

User-provided bounding box Segmentation result Ground truth

Goal: partition
image into multiple
regions that share

BIXY

(a)

Tumor w .

corein & attributes for
voviously| localization or
s quantification

Example: Tumor segmentation in MRI brain scans



Application: Segmentation of neuronal
structures In electron microscope stacks

Segmentation of Neuronal Structures in EM

UNI
REIBURG

= Ongoing
challenge since
ISBI 2012

structures ko Wt T
with very low — 55 = g™ 15¥ag
contrast 2 v
membranes
Olaf Ronneberger, University of Freiburg. Germany, 22.5.2015 17

https://Imb.informatik.uni-freiburg.de/people/ronneber/u-net/



Segmentation = pixel-wise classification?

- Classify pixel-wise with deep CNN classifier
« Use a “sliding window” approach

¥ DNN output

-

» Drawbacks: Inefficient to scale to large images
* Only uses local information

SR - [ Deep Neural Network]

Calibration

Pr(p = membrane)

Original Image

[Ciresan et al., 2012]



Fully convolutional neural networks (fCNN)

convolution fully connected
typical //
yd “tabby cat”
PP
227 x 227 55x55 27 x 27 13 x13

replace with “1x1” convolutions
convolution

tabby cat “pixel”

fCNN E @@ﬁ/// '

1
227 x 227 55 x 55 27 x 27 13 x13
convolution tabby cat heatmap
anit D
(w/ arbitrary

input shape)

HxW H4x W4 HBxW8 HAE6 x WNE H/32 x W/32

W/32

Figures: https://leonardoaraujosantos.qgitbooks.io/artificial-inteligence/content/image seamentation.html



https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

fCNN Segmentation Network [Long et al., 2014]

convolution tabby cat heatmap
et ?, //¢ e
Hx W H/4 x W4 H/8 x W/8 HM6 x W16 H/32 x WI32 W/32
upsampling/
interpolation

HxW

pixelwise output+loss

Figures: https://leonardoaraujosantos.qgitbooks.io/artificial-inteligence/content/image seamentation.html



https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/image_segmentation.html

Skip connections in fCNNs

image convl pooll conv2 pool2 convy pool3 conv4 poold convd poold convG-7
interp + sum
f\. 2x conv7
input image stride 32 stride 16 stride 8 ground truth

no skips 1 skip 2 skips

Figure: [Long et al., 2014]



U-net architecture [Ronneberger et al. 2015]

input
image
tile

572 x 572

164 64 symmetric
downsampling/ 128 64 64 2
upsampling phases
output
> N vl bt ': segmentation
/ = Z| map

5| = _ y , : :
5l B skip conhnections I

' 128 128 \

256 128
B SUECH S
' 256 256 t

512 256
I?NI?OI =» conv 3x3, RelLU
| % S S ~» copy and crop
¥ max pool 2x2

4 up-conv 2x2
=» CcONv 1x1

1042

512

Figure: [Ronneberger et al. 2015]



Application: Segmentation of neuronal
structures In electron microscope stacks

Segmentation of Neuronal Structures in EM

UNI
REIBURG

= Ongoing
challenge since
ISBI 2012

structures ko Wt T
with very low — 55 = g™ 15¥ag
contrast 2 v
membranes
Olaf Ronneberger, University of Freiburg. Germany, 22.5.2015 17

https://Imb.informatik.uni-freiburg.de/people/ronneber/u-net/



Issue: Very Little Training Data

- Hand-labelled segmentations difficult to obtain

- e.g., ISBI 2012 challenge has only 30 training images!

» Transfer learning less useful in segmentation context

http://brainiac2.mit.edu/isbi challenge/home



https://m2dsupsdlclass.github.io/lectures-labs/slides/04_conv_nets/index.html#82
http://brainiac2.mit.edu/isbi_challenge/home

Solution: Data Augmentation

Figure: https://m2dsupsdiclass.github.io/lectures-labs/slides/04_conv_nets/index.html#82


https://m2dsupsdlclass.github.io/lectures-labs/slides/04_conv_nets/index.html#82

Solution: Data Augmentation

correspondingly deformed
manual labels

(for visualization: no rotation, no shift, no extrapolation)



Other Improvements:
Task specific loss functions
binary cross-entropy: Lyc = Zyz logo; + (1 —y;)log (1 — 0;)

yi=true labels
“Dice” loss: 23" 0y or=predictions
1

(common metric Lpice = RSN
used in segmentation)

original image binary Cross- entropy Dice loss

Figure: [Drozdzal et al. 2016]



Other applications: Cell segmentation
In light microscopy images

ISBI cell tracking challenge: PhC-U373

dataset O1. frame 41

UNI
FREIBURG

Our Results: 92% loU. 2nd: 83% |

Olaf Ronneberger, University of Freiburg. Germany, 22.5.2015 20



Other applications: Segmentation of
prostate in 3D MRI scans

|IBUO0IOD) |enibes

V-net [Milletari et al., 2016]



Takeaway

- Standard CNN classification architectures are inefficient/poor choices for
segmenting biomedical images.
» High-quality segmentation of biomedical images
iIs made possible with fully connected neural networks (such as the U-net)
- Domain specific knowledge (data augmentation & custom loss functions)

yields more improvements.
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S b et % I‘lel =>conv 3x3, ReLU : 3 manual labels
oM g TR & .
Voo oo o e copy and crop " ! 3 —
el N S ¥ max pool 2x2 resulting deformed image
2% iom F- 4 up-conv 2x2 (for visualization: no rotation, no shift, no extrapolation)
T = conv 1x1



Recap and Outlook



Successful applications of deep
learning in biomedical image analysis

e Classification/Detection

e Skin lesion classification from photographs for skin cancer detection

e Lung nodule classification in CT images for lung cancer detection

e Segmentation

e Segmentation of neuronal structures in electron microscope stacks

e Cell tracking in light microscopy images
* Prostate segmentation in 3D MRI images

e & Many, many more —
Hundreds of new publications and patents
every year

250
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(=%
E 150
Z 100
E

3
4
S0

0 —

R | |

2012 2013 2014 2015 2016 2017

mAIl mCONN REM RNN MAE N Other HMultiple

[Litjens et al., 2017]



Challenges in deep learning
for biomedical imaging

 Challenge 1: Limited Training Data
e Transfer Learning — pre-train on ImageNet
e Data Augmentation — shifts, rotations, warps of data

 Not talked about: Generative models, few-shot learning

* Challenge 2: Complex Input Formats

e Multi-scale/multi-view concatenations of CNN'’s

* Not talked about: 3-D CNN’s, incorporating semantic information
* Challenge 3: Tasks Beyond Classification

* Fully convolutional neural nets for segmentation

* Modified loss functions - Dice loss in place of cross-entropy

* Not talked about: image restoration/reconstruction problems (next)



Part Il:
Deep learning for
biomedical image reconstruction




Biomedical imaging pipeline

Analyze
Diagnose
Quantify
Interpret
Intervene

Reconstruct Process
Images Images




Why bother? In MRI...

Magnetic Resonance Imaging (MRI)

* Long scan-time (30-90 minutes)

* Physical limits to how fast one can
take measurements

e Could take fewer measurements,
but at the expense of a noisy/
lower-resolution image

Goals:
faster scans: accelerate MRI acquisition (take fewer measurements)
faster recons: reduce computational cost of reconstruction

better images: improve spatio-temporal resolution (e.g., dynamic MRI)



Why bother? In CT...

X-ray Computed Tomography (CT, aka a CAT scan)

Uses ionizing radiation — potentially harmful to patient

ORIGINAL INVESTIGATION

Projected Cancer Risks From Computed

Tomographic Scans Performed -

in the United States in 2007 that approximately
29,000 future cancers

Amy Berrington de Gonzdlez, DPhil; Mahadevappa Mahesh, MS, PhD; Kwang-Pyo Kim, PhD;
Mythreyi Bhargavan, PhD; Rebecca Lewis, MPH; Fred Mettler, MD; Charles Land, PhD COUld be related to CT

“Overall, we estimated

scans performed in the
US in 2007.”

Goals:
lower dose: try to use lower radiation doses, yet achieve same image quality

faster recons: reduce computational cost of reconstruction



Other applications:
Medical imaging

Positron Emission Tomography (PET) : :

200x Low-dose PET Reconstruction using Deep Learning

Junshen Xu', Enhao Gong', John Pauly and Greg Zaharchuk* @ @
(c) (d)

Fig. 1.  PET images with normal dose and different levels of dose
reduction, (a) standard-dose, (b) quarter-dose, (c) twentieth-dose, and (d)
two-hundredth-dose.

Ultrasound Imaging

TOWARDS CT-QUALITY ULTRASOUND IMAGING USING DEEP LEARNING
Sanketh Vedula*' Ortal Senouf *' Alex M. Bronstein' Oleg V. Michailovich* Michael Zibulevsky'

" Technion — Israel Institute of Technology
! Electrical and Computer Engineering, University of Waterloo, Canada




Other applications:
Biological imaging

Cell imaging
super-resolution localization fluorescence microscopy

d PALM (k = 3,000) b ANNA-PALM (k=3,0000 C PALM (K = 30,000)

- . : . - r I
\. :. ....1 ’ .."lb". . .« 3 o™ - : A s \ .-.:..;.;‘." - o "
PR "y A . s & ~ ’

conventional
x10 more data

conventional with deep learning

Deep learning massively accelerates super-resolution
localization microscopy

Wei Ouyang!-3, Andrey Aristov!-3, Mickaél Lelek!-3, Xian Hao!-* & Christophe Zimmer!-3




Medical image reconstruction basics

raw data images




Background: MRI Acquisition

MRI: Data is acquired in spatial frequency domain (k-space)

k-space image domain

Inverse Fourier transform



Background: Computed Tomography
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Video credit: Samuli Siltanen  https://www.youtube.com/watch?v=q7Rt_OY_7tU




Abstraction: Linear inverse problem

linear
measurement
operator

y = HX)

measurements image



Abstraction: Linear inverse problem

linear

measurement
operator
measurements image
Example: MR k-space MRI image
measurements (tissue density)

=HMR|(

Fourier Transform



Abstraction: Linear inverse problem

linear
measurement
operator
measurements image

Example: CT imaging CT image

sinogram (attenuation)

Radon/X-ray Transform



Abstraction: Linear inverse problem

linear
measurement
operator
measurements image
Write as matrix equation:
measurement
matrix
vectorized vectorized
measurements image

(unknowns)



Abstraction: Linear inverse problem

linear
measurement
operator
measurements image
Write as matrix equation:
matrix inverse
Too big to —
invert exactly —
| -
approximate
solution
vectorized vectorized
measurements image

(unknowns)



Conventional reconstructions

approximate
inverse
N
H(y) X
measurements reconstructed

image
Example: MRI imaging

~y

“Inverse discrete
“k-space” Fourier transform”

Image source: https://sites.google.com/site/fanyangspace111/cone-beam-tomographyct-reconstruction-using-filtered-back-projection



Conventional reconstructions

approximate
Inverse
measurements reconstructed
image
Example: CT imagin ~ ~~1 ~ ~ _1
" I Xo =Ho (y) X =H"(y)
y “back-projection” “filtered back-projection”

“sinogram”

50 100 180 200 250 300 39 50 100 120 200 20 300 350

Image source: https://sites.google.com/site/fanyangspace111/cone-beam-tomographyct-reconstruction-using-filtered-back-projection



Conventional reconstructions

approximate
Inverse

measurements reconstructed

image

* Need fully-sampled data to get
(#measurements = #pixels)

 Goal: take fewer measurements (undersample)
to speed up acquisition (in MRI), reduce dose (in CT)

* What happens to conventional reconstructions
when we undersample?



Undersampling in MRI

sample locations under-sampled fully-sampled
In k-space
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Undersampling in CT

fully-sampled recon

full sinogram

lv .
—p
v

“

- 4

sparse view sinogram

]




Undersampling

linear
measurement
operator

y = HX)

measurements image

Write as matrix equation:
measurement

matrix

Fully-sampled

H Same # of equations

as unknowns

vectorized
measurements

vectorized
image
(unknowns)



Undersampling

linear
measurement
operator

y = HX)

measurements image

Write as matrix equation:

measurement
matrix

Undersampled |] —

fewer equations

vectorized

than unknowns measurements

Infinitely many vectorized
solutions! image

(unknowns)




Compressed sensing - 2006

Sample locations
Ground truth in k-space

Exact

reconstruction!

Conventional Compressed sensing
reconstruction reconstruction

Candes, Romberg, Tao 2006



Compressed Sensing Reconstruction

Pose reconstruction as an optimization problem:

minimize ||Hx — y|* + r(x)
X data-fit term regularizer

Typically r(x) is chosen to promote sparsity of the image in some domain

coefficients
e.g., mostly
Wavelet ZEero
sparsity
r(x) = |[Wx]|:

Figure by Alessio Damato, https://en.wikipedia.org/i|/Weletrnsform

Solve by an iterative method, e.g., gradient descent

Computationally costly: ~100x slower than conventional reconstruction



Compressed Sensing Dynamic MR

Free-Breathing Liver Perfusion Imaging

= Retrospective selection of resolution
* Reconstruction with different timing possible

= Example: 13 spokes = 2 sec resolution
= Perfusion imaging during free breathing

* Here: 384 x 384 x 30 matrix
= Spatial resolution 1.0 x 1.0 x 3.0 mm?
= Temporal resolution 1.5 sec

Top: Gridding
A~ Bottom: GRASP

\NYULangone
MEDICAL CENTER Chandarana et al, ISMRM 2012- §52¢

2014 ICMRI & KSMRIM, Luncheor Symposium



The Truth About Compressed Sensing

14
In the literature, a lack of translation to final

users is presently discernable: while there are
over 120 papers about compressed sensing in
MRI published in Magnetic Resonance in
Medicine, there are only 8 papers in Radiology.

it is essential for the radiographer to get image
feedback within seconds of the scan terminating
for accelerated imaging to be practically useful.

Quote from [Hollingsworth, 2015]

- Hollingsworth, K.G., 2015. Reducing acquisition time in clinical MRI by data undersampling and
compressed sensing reconstruction. Phys. Med, Biol. 60(21), p.R297.



ML to the rescue

Optimization algorithm

y arg min ly —XBll5 + r(B)

Feed-forward deep neural network

B
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Learn from training pairs




Deep learning
for image reconstruction

Approach 1: Learn to “enhance” traditional reconstructions
Approach 2: Train a generative model
Approach 3: Unrolling of optimization algorithms



Approach 1: Learn to “enhance”
traditional reconstructions




“Enhancing” with Deep Learning

Single Image Super-resolution

Low-resolution Deep Ground Truth
Input Neural Network
Output

https://webdav.tue.mpg.de/pixel/enhancenet/



Deep Neural  Ground
Input  Network Output Truth

Progressive Face Super-Resolution via Attention to Facial Landmark

Deokyun Kim, Minseon Kim, Gihyun Kwon, Dae-Shik Kim
fSubrnilted on £2 Aug 2015)



How to use CNN'’s to “enhance” images?

Most existing CNNs are designed for classification tasks, use “max pooling” layers

RELU RELU
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Super-resolution with a CNN

IEEE TRANSACTIONS ON PATTERN ANALYSIE AND MACHINE INTELLGENCE, VOL. 38, NO.2, FEBRUARY 2016 295

Image Super-Resolution Using Deep
Convolutional Networks

Chzo Dong, Chen Change Loy, Member, IEEE, Kaiming He, Member, IEEE, and
Xiacou Tang, Fellow, IEEE

3 Layer CNN

ny feature maps 1y fealure maps
of low-resolution image of high-resolution image
2 X f2 fa X f3 /

. ! | ST " : :
Low-resolution § i 1 (O e pe e e “ { Hizh-resolition
- PR S = = i e T R N R R 2w \
nuage (pul) BYWNAA 0 - - Bl s gt ‘/‘ nnage (outpul)

| ‘/‘
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Patch extraction

_ Nou-linear mapping Recoastruction
and representation



raw data

(low resolution image) S U pe N-reso I Uth N
< with CNNSs

H’

bicubic
interpolation Train deep CNN
to remove artifacts

/) ?:- TEAN" XA
X RGEX

o

approximation blurry/blocky
of high-resolution artifacts due to
image re-scaling

reconstruction

Pictures from: http://webdav.tuebingen.mpg.de/pixel/enhancenet/



raw datay

(sparse view Extension to

sinogram) . . .
medical imaging:

CT reconstruction

Train deep CNN
to remove artifacts

conventional reconstruction streaking reconstruction
(filtered back-projection) artifacts due to
undersampling

McCann, M. T., Jin, K. H., & Unser, M. (2017). Convolutional neural networks for inverse problems in imaging: A
review. IEEE Signal Processing Magazine, 34(6), 85-95.



Example “Deep” CT Reconstruction

Ground Truth FBP SNR 13.43 TV SNR 24.6S FBP ConvNet SNR 28.53

e

conventional compressed deep CNN

artifacts due to  reconstruction sensing reconstruction
undersampling reconstruction (~0.1 s)
(~60 s)
McCann, M. T., Jin, K. H., & Unser, M. (2017). Convolutional neural networks for inverse problems in imaging: A
review. IEEE Signal Processing Magazine, 34(6), 85-95.




Example “Deep” MRI Reconstruction

4-fold compressed
under sampled conventional sensing Deep CNN
data reconstruction reconstruction reconstruction

Error x10

Lee, D., Yoo, J., & Ye, J. C. (2017, April). Deep residual learning for compressed sensing MRI.
In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)(pp. 15-18). IEEE.



Drawbacks to Deep CNNs

* Need to retrain CNN for any change in measurements
e Undersampling rate (e.qg., 2-fold, 4-fold, 10-fold, etc.)
e Undersampling pattern (e.g., lines, spirals, radial, etc.)
e Change in noise statistics (e.g., different scanner)

* Relatively high sample complexity
- need many training images to avoid overfitting

e Sensitive to perturbations



On instabilities of deep learning in image reconstruction - Does
Al come at a cost?

Vegard Antun) Francesco Renna! Clarice Poon} Ben Adcock? Anders C. Hansen*™'

MRI knee image original + perturbation
Onginal '

Artifacts arise

from small
perturbations

Deep CNN
Reconstructions




Approach 2 Tram a generatlve model (GAN)

' « AR o |
NVIDIA “Style-based GAN” face image model
Karras, Laine, & Aila 2019

See also: https://thispersondoesnotexist.com/



Generative adversarial networks (GANS)

CRICATI Y XS
X7 EX

A 78"

100z {H = A

Code Project and
reshape

generator network — deep CNN

DCGAN - Goodfellow et al

, 2016



Generative adversarial networks (GANS)

Training set V Discriminator
////// _Real
N S —
Random — |
noise -Fake

- S
,',"A L_-"..i .:'.4;‘_.\(
~ L S \ P
w¥ N ) N
3 AAn e I
* by T /
/ TS /
RS R A e
ol RS .
L AT

Generator

Image credit:

Fake image

Jointly train Generator and Discriminator network



GANSs for super-resolution

bicubic deep CNN GAN
(21.59dB/0.6423) (23.53dB/0.7832) (21.15dBA.6RGR)

.
. N,

Figure 2: From left to right: bicubic interpolation, deep residual network optimized for MSE, deep residual generative
adversarial netwark optimized for a loss more sensitive to human perception, original HR image. Corresponding PSNR and

SSIM are shown in brackets. [4 x upscaling]

- Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network

Christian Ledig, Lucas Theis, Ferenc Huszdr, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi
Twitler

jcledig, ltheiz, fruszar, jraballero,aacostadiaz,anizken,atejani, jtcote, ackanw, wehij@owitter. com




Real MRI images

T1 Tlc 12 Flair T1 T1lc T2 Flair

original

tumor 16% larger tumor mirrored

tumor 16% smaller

_——

* Medical Tmage Synthesis for Data Augmentation and
' .1 Anonymization using Generative Adversarial Networks

tumor on normal

Hoo-Chang Skin' Neil A Tenenholtz®, Jameson K Rngorx‘: Christopher G Schwarz”,
Matthew L Serjem”, Jettrey L. Gunter”, Katherire And-iol2®, and Mark Mickalski®

SimUIated MRI Images I NVIDIA Corperstion

* MGH & BWH Center for Clinical Data Science, Bosion, MA, USA
' Mayc Clinic. Rochester, MN, USA



GANSs for image reconstruction

Idea: Find image in the range of the generator that best fits the measurements

[Hxy — y|]? = 100
[Hxo — y|]2 = 1

|Hxz —y||* =10

Find best z by solving an optimization problem, e.g., by gradient descent

minimize |[Hx — y||° —» minimize [|HG(z z) —y|°
xerange(G)

Bora, A., Jalal, A., Price, E., & Dimakis, A. G. Compressed sensing using generative models. ICML 2017



GANSs for MRI Reconstruction

Compressed sensing GAN
Ground truth Reconstruction Reconstruction

DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction’



Drawbacks to GANS

e Training an accurate GAN requires many training samples
(NVIDIA faces: ~200,000 training examples)

 Reconstructed images must lie in the range of the GAN
- |If patient has abnormality not contained in training set,
the abnormality may be “smoothed over” by the GAN

GAN Compressed Sensing

Original x5 + a2

Antun, V., Renna, F., Poon, C., Adcock, B., & Hansen, A. C. (2019).
On instabilities of deep learning in image reconstruction-Does Al come at a cost?. arXiv preprint arXiv:1902.05300.



Approach 3: Unrolling algorithms

Learning to learn by gradient descent
by gradient descent

Marcin Andrychowic_:zl, Misha Denil’, Sergio Gémez Colmenarejo', Matthew W. 'l-loffmanl,
David Pfau’', Tom Schaul', Brendan Shillingford' 2, Nando de Freitas'-%?
'Google DeepMind ~ “University of Oxford *Canadian Institute for Advanced Research

marcin.andrychowicz@gmail.com
{mdenil, sergomez,mwvhoffman, pfau,schaul}@google.com
brendan.shillingford@cs.ox.ac.uk, nandodefreitas@google.com




Learning to Optimize
via Deep Learning

e Intuition: Compressed sensing gives good
reconstructions but requires solving a computational
costly optimization problem each time

e Can we learn to solve the compressed sensing
optimization problem with deep learning?

~y

y . mini;nizeHHx—YHZ+r(x) — ¥

y — deep neural network — X




Example: Unrolled gradient descent

: Measurement matrix included in network
Gradient descent network

nHTy

Shared weights

e Mimics finitely many iterations of gradient descent
applied to minimize ||Hx — y||? + r(x)
X

* Replace regularizer r(x) with learned neural network



Neumann networks (O., Gilton, Willett, 2019

Neumann network

skip connections

NXTy

s = S
PRI RS

)

Dense Convolutional
Networks

EREENNES)




Sample Complexity - Deblurring task

B Neumann
Neumann Unrolled

Grad
Network Gradient [C))?\lel\rl) GAN > : RtraasAuto
Original (ours) Descent 30| mmm GAN
F V - - “25
ok | £

b
samples

' | 30k
Blurry error |mages Sample Size

input

Neumann Networks for Inverse Problems in Imaging

Davis Gilton, Greg Ongie, Rebecca Willett”
January 15, 2019




MRI| Reconstruction Results

Compressed
Original Neumann Network Sensing

k-space Sampling PSNR: 34.95 dB PSNR: 32.29 dB PSNR: 32.39 dB
Mask Time: 16.3 sec Time: 349.2 sec Time: 1.6 sec




Recap and Outlook



Challenges in deep learning
for biomedical imaging

e Challenge 1: Limited Training Data

 Unrolling — incorporate forward model into network

 Challenge 2: Complex Input Formats

e Use "approximate inverse” as input to network,
rather than raw measurements

 Challenge 3: Beyond Classification
 Adapt CNN'’s to perform image restoration tasks

e Use GAN'’s or to model image distribution



Going Forward: Uncertainty Quantification

How do we know we are not hallucinating features in the reconstruction?

Can we learn a full posterior? p(x|y)

Hypothesis testing

Posterior sampling

conditional
mean
Fig. 4: The suspected tumor (red) and the reference region (blue) shown in
the sample posterior mean image. Right plot shows average contrast
differences between the tumor and reference region. The histogram is
computed by posterior sampling applied to test data (fig. 2), the yellow
curve is from direct estimation, and the true value is the red threshold.
point-wise
standard . .
14 Deep Bayesian Inversion
deV|at|0n Computational uncertainty quantification for large scale inverse
problems
Jonas Adler Ozan Oktem
Department of Mathematics Department of Mathemetics
KTH Royal institute of Technology KTH  Roval mstitute of Technology
jonzsacl@®kth.se czanQkth. se

Rosearch ard Fhysics, Zlekta




Access to Datasets

* Further advances will require standardized training and test sets
* Facebook/NYU FastMRI: 900 3-D knee MRI images

-

facebook Al Research \NYJuﬂfﬁm Home Lzsaderbcards Tna Datase: Submission Guicelnes

“_ Heal

fastMRI

Accelerating MR Imaging with Al

Latest News & Updatas

What is
fastMRI?

11-21.201A

New asINRIaow sooes & ressand
ook feom Facshionk and MY
Sead Moz

fastMRIlis collahoretiva research project from Facehook
Al R2s2arcn (FAIR) ane NYLU _angone Health te
investigate the use ¢ Al tamake MRI ecans up 010
ames faster,

By creating accurate images from unde~sampled datz,
Alimzge reconstruction cou'd enable fastar scanning
rimes, praviding an imaroved experienca far patients and
potentially maxing MRIs accez¢ible to more people.

Bn-20-2010

Fa whock & ud WY Schoul of
Mee ficine Losuch rwara ch < 2
vol aboration ..

L e

Tc enable “he kroader research community to partizipate
in this important project, we ar2 open-<oureing our
caszeines models, evaluation matrics conven et
Fytorch loaders, and groviding a pub ic leadercard 1o
share results. Check out our GitHuk repozitory.

NYU Langane Haalth has relezsed fu'ly anorymizad raw
dara and image datazets, that you can acc23s atthis link.

http://fastmri.org/




Is reconstruction even necessary?

raw
data

|mages
Analyze

Diagnose

Aquire Reconstruct Process .
—> —> uantif
Data Images Images I?l terpre}’:

Intervene




Thanks!

Additional reading:

Litiens, G., et al. (2017). A survey on deep learning in medical image
analysis. Medical image analysis, 42, 60-88.

Lundervold, A. S., & Lundervold, A. (2019). An overview of deep
learning in medical imaging focusing on MRI. Zeitschrift far
Medizinische Physik, 29(2), 102-127.

Kaggle data science bowl 2017: Lung nodule classification
https://www.kaggle.com/c/data-science-bowl-2017/overview

McCann, M. T., Jin, K. H., & Unser, M. (2017). Convolutional neural
networks for inverse problems in imaging: A review. IEEE Signal
Processing Magazine, 34(6), 85-95.

email: gongie@uchicago.edu
web: gregongie.qgithub.io
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http://gregongie.github.io
https://www.kaggle.com/c/data-science-bowl-2017/overview

