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Our goal is to develop theory and algorithms
for compressive off-the-grid imaging

measurements

Off-the-grid = Continuous domain representation
Compressiveoff -the-grid imaging:
Exploit continuous domain modeling to improve

Image recovery from few measurements



Motivation: MRI Reconstruction

Main Problem:

Reconstruct image from Fourier domain samples

Related Computed Tomography, Florescence Microscopy
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Approximated measurement model:

DFT
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DFT Reconstruction
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DFT Reconstruction
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DFT Reconstruction
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Full sampling is costly!
(or impossible  e.g. Dynamic MRI)
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Piecewise constant model
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Recovery by Total Variation (TV) minimization

TV semi-norm: lIglltv = » \/|gi—|—1,j — gijl* + [8ij+1 — &ijl?
i,

l.e., LI-norm of discrete
gradient magnitude
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Recovery by Total Variation (TV) minimization

TV semi-norm: llglltv = » \/|gi—|—1,j — gijl* + [8ij+1 — &ijl?
i,

l.e., LI-norm of discrete
gradient magnitude

min ||g||tv subject to Fog = Fof (TV-min)

gECNXN \

Convex optimization problem Restricted DFT “ee eee 2”0,
Fast iterative algorithms:
ADMM/Split-Bregman Q = Tr.titiillt.

FISTA, PrimabDual, etc.

Sample locations



Rel. Error = 30%

25% Random
Fourier samples

(variable density)



Example

Rel. Error = 5%
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Theorem Krahmer& Ward, 2012]:
If f e CNXN has s-sparse gradient, then f is the
unigque solution to ( TV-min) with high probability

provided the number of random ™ Fourier samples m
satisfies m > slog> (s) log®(N)

" Variable density sampling




Summary of
DISCRETE PARADIGM

A Approximate F — DFT

A Fully sampled: )
Fast reconstruction by DFT ™

A Under-sampled (Compressed sensing
Exploit sparse models & convex optimization

i E.g. TVEminimization
| Recovery guarantees
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Problem: The DFT Destroys Sparsity!
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Problem: The DFT Destroys Sparsity!
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Consequence: TV falls in super-resolution setting

Fourier
Ringing Artifacts



