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Our goal is to develop theory and algorithms  
for compressive off -the-grid imaging  

Off-the-grid = Continuous domain representation  

Compressive off -the-grid imaging:  

Exploit continuous domain modeling to improve  

image recovery from few measurements  

 

 

Few 
measurements  



Motivation: MRI Reconstruction  

Main Problem:  

Reconstruct image from Fourier domain samples  

Related: Computed Tomography, Florescence Microscopy  



Uniform Fourier Samples =  
Fourier Series Coefficients  



Fourier  
Interpolation  

Fourier  
Extrapolation  

vs. 

Types of ̹Compressive̺ Fourier Domain Sampling 

radial random low-pass 

Super-resolution  
recovery 

̹Compressed Sensing̺ 
recovery 



CURRENT  
DISCRETE  
PARADIGM  



̹True̺ measurement model: 

Continuous Continuous 



̹True̺ measurement model: 

Approximated measurement model:  

DISCRETE  DISCRETE  

Continuous Continuous 



Continuous 

DFT Reconstruction 

Continuous 
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DFT Reconstruction 

Continuous 

DISCRETE  



Continuous 

DFT Reconstruction 

Continuous 

DISCRETE  DISCRETE  



̹Compressed Sensing̺ Recovery 

Full sampling is costly!  
(or impossible e̲.g. Dynamic MRI) 



̹Compressed Sensing̺ Recovery 

Randomly 
Undersample 



̹Compressed Sensing̺ Recovery 

Convex 
Optimization  

Sparse 
Model 

Randomly 
Undersample 



Convex 
Optimization  

Sparse 
Model 

Example: 
Assume discrete gradient  
of image is sparse  
 
 
Piecewise constant model  



Recovery by Total Variation (TV) minimization  

TV semi-norm: 
 
 
i.e., L1-norm of discrete 
gradient magnitude 
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Recovery by Total Variation (TV) minimization  

Sample locations 

TV semi-norm: 
 
 
i.e., L1-norm of discrete 
gradient magnitude 

Restricted DFT 



Recovery by Total Variation (TV) minimization  

Convex optimization problem  
Fast iterative algorithms:  
ADMM/Split-Bregman,  
FISTA, Primal-Dual, etc. 

TV semi-norm: 
 
 
i.e., L1-norm of discrete 
gradient magnitude 

Restricted DFT 

Sample locations 



Example: 

25% Random  
Fourier samples 
(variable density)  

Rel. Error = 30% 



Example: 

Rel. Error = 5% 25% Random  
Fourier samples 
(variable density)  



Theorem [Krahmer & Ward, 2012]: 

If                      has s-sparse gradient, then f  is the 

unique solution to ( TV-min) with high probability 

provided the number of random * Fourier samples m 

satisfies  

 

 

* Variable density sampling  



Summary of  
DISCRETE PARADIGM  

ÅApproximate  
 
ÅFully sampled:  

Fast reconstruction by  
 
ÅUnder-sampled (Compressed sensing): 

Exploit sparse models & convex optimization  
ïE.g. TV-minimization  
ïRecovery guarantees  
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Problem: The DFT Destroys Sparsity! 
Continuous 
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Problem: The DFT Destroys Sparsity! 
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Gibb̶s Ringing! 



Problem: The DFT Destroys Sparsity! 
Continuous DISCRETE  

Sample 

FINITE DIFFERENCE  
Exact Derivative 

Not Sparse! 



Consequence: TV fails in super-resolution setting  

x8 Ringing Artifacts  
Fourier 


