Recovery of Piecewise Smooth
Images from Few Fourier Samples

Greg Ongle*, Mathews Jacob

Computational Biomedical Imaging Group (CBIG)
University of lowa

SampTA2015
Washington, D.C.

L
ﬁ THE UNIVERSITY OF lOWA



1. Introduction

2. Oft-the-Grid Image Recovery:
New Framework

3. Sampling Guarantees
4. Algorithms

5. Discussion &
Conclusion




Our goal is to develop theory and algorithms
for off-the-grid imaging

« Off-the-grid = Continuous domain representation
 Avoid discretization errors

« Continuous domain sparsity 7= Discrete domain sparsity




Wide range of applications
« Super-resolution MRI: Fourier undersampling approach

Fourier Fourier
Extrapolation Interpolation

— MRI Modalites: Multi-slice, Dynamic, MRSI
« Compressed Sensing MRI

« Outside MRI: Deconvolution Microscopy, Denoising, etc.



Main inspiration: Finite-Rate-of-Innovation (FRI)
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Fourier samples PWC signal

« Recent extension to 2-D images:
Pan, Blu, & Dragotti (2014), “Sampling Curves with FRI”.
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_ Stage 2: solve linear system for amplitudes
recover signal
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Stage 1: solve linear system for filter



Challenges extending FRI to higher dimensions:
Singularities not isolated

2-D PWC function
f(x,y)

Isolated Diracs



Challenges extending FRI to higher dimensions:
Singularities not isolated

2-D PWC function Oxf
f(x,y)

Vv
—

Diracs on a Curve
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Recall 1-D Case...
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2-D PWC functions satisfy an annihilation relation

spatial domain

f(x,y)

Fourier domain

?[k] " | annihilating filter

Annihilation relation: ) ﬂ[f — k]jck =0




Can recover edge set when it Is the
zero-set of a 2-D trigonometric polynomial
[Pan et al., 2014]
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FRI curves can represent complicated edge
geometries with few coefficients

Multiple curves Non-smooth Approximate
& Intersections points arbitrary curves

13x13 coefficients 7x9 coefficients 25x25 coefficients
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We give an improved theoretical framework
for higher dimensional FRI recovery

« [Pan et al., 2014] derived annihilation relation for
piecewise complex analytic signal model

f(z) = Zgi(Z) - 10,(2)

s.t. g; analytic in £,

* Not suitable for natural images

« 2-Donly

* Recovery is Ill-posed:

Infinite DoF




We give an improved theoretical framework
for higher dimensional FRI recovery

* Proposed model:
piecewise smooth signals

f(x) = Z gi(x) - 1o (x)

s.t. g; smooth in ;

« Extends easily to n-D

* Provable sampling guarantees

- Fewer samples necessary

for recovery




Annhilation relation for PWC signals

Prop: If f is PWC with edge set E C {u = 0}
for 1 bandlimited to A then

Y hlk]Of[e — k] =0, Ve€ Z"

kEA \

any 1st order partial derivative




Annhilation relation for PWC signals

Prop: If f is PWC with edge set E C {u = 0}
for 1 bandlimited to A then

Y hlk]Of[e — k] =0, Ve€ Z"

kEA \

any 1st order partial derivative

Proof idea: Show pn - 9f = 0 “distributionally”
Use convolution theorem



Proof:

Olg.




Proof:
Write f = Zi dj ° ].Qi —> Of = Zi aj ° BIQi

Distributional derivative of indicator function:
smooth test function

(Ojla, ) = —(1q, Ojp)

— —/ 8j(,0 dx
divergence ( Q

theorem
—% gO I’Ij dO'
o



Proof:
Write f = Zi dj ° ].Qi —> Of = Zi aj ° BIQi

Distributional derivative of indicator function:
smooth test function

(Ojla, ) = —(1q, Ojp) n

= — [ Oipdx
divergence ( /Q . oS

theorem
—% gO I1j dO'
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— u-(‘?le:O

(1 - Oila, p) = (Oila, pu p) = —jéﬂu enjdo= 0
Since t = 0 on 0f2



Annhilation relation for PW linear signals

Prop: If f is PW linear, with edge set E C {u = 0}
with o bandlimited to A then

N w2[K]92f[¢ — k] =0, V£ € 7"
k&2

any 2"d order partial derivative




Annhilation relation for PW linear signals
Prop: If fis PW linear, with edge set E C {u = 0}
with 1 bandlimited to A then
N w2[K]92f[¢ — k] =0, V£ € 7"
kE2A

any 2"d order partial derivative

Proofidea: f =g-1lqg, g linear

product rule x2 9%f = 92 Q + 20g - 819 + g - d%1g

/

annihilated by uz



Can extend annihilation relation to a wide class of
piecewise smooth images.

f(x) =) &i(x) - 1a/(x)
i=1

S.T. Dg, = 0 in Qi

|
Any constant coeff.

differential operator




Can extend annihilation relation to a wide class of
piecewise smooth images.

f(x) =) &i(x) - 1a/(x)
i=1

S.T. Dg, = 0 in Qi

Signal Model: Choice of Diff. Op.: -
PW Constant D=V
_ — 1%t order
PW Analytic* D = O« + jOy J
PW H | D=A
armonic | ond order
PW Linear D = {Oxx; Oxy, Oyy } |

PW Polynomial D = {909} a|=n } nth order



Annhilation relation for PW smooth images

Prop: If fis PW smooth, such that

1. the nulling operator D is nth order, and
2. theedge set E C {p = 0} with
1 bandlimited to A then

Y uilk]Df[ — k] =0, VL€ Z"
kEn
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Sampling theorems:

Necessary and sufficient number of Fourier samples for
1. Unique recovery of edge set/annihilating polynomial
2. Unique recovery of full signal given edge set

— Not possible for PW analytic, PW harmonic, etc.

— Prefer PW polynomial models

= Focus on 2-D PW constant signals



Challenges to proving uniqueness

1-D FRI Sampling Theorem [Vetterli et al., 2002]:
A continuous-time PWC signal with K knots can be

uniquely recovered from 2K+1 uniform Fourier samples.

Proof (a la Prony):

Form Toeplitz matrix T from samples, use uniqueness of

Vandermonde decomposition: T = VDV"

“Caratheodory Parametrization”



Challenges proving uniqueness, cont.

Extends to n-D if singularities isolated [Sidiropoulos, 2001]
F ke
—> ylk| = Zaiejz =
i

Not true in our case--singularities supported on curves:

o1

Requires new techniques:
— Spatial domain interpretation of annihilation relation

— Algebraic geometry of trig. polynomials



Minimal (Trig) Polynomials
Define deg(p) = (K, L) to be the dimensions of the

smallest rectangle containing the Fourier support of [

F L

K

Prop: Every zero-set of a trig. polynomial C with no
Isolated points has a unique real-valued trig. polynomial Lo
of minimal degree such thatif C = {u = 0}

Then deg(uo) < deg(p) and p =~ - po



Proof idea: Pass to Real Algebraic Plane Curves

Zero-sets of trig polynomials of degree (K,L)
are in 1-to-1 correspondence with

real algebraic plane curves of degree (K,L)

Conformal
change of
variables /’
_ - ‘f
» o N
N
\\
p(ta S) — U,




Uniqueness of edge set recovery

Theorem: If fis PWC* with edge set E = {u = 0}
with # minimal and bandlimited to A then

c = i is the unique solution to

Y " c[k]VF[€ — k] = 0 for all £ € 2A
ke

*Some geometrical restrictions apply

Requires samples
CZ*  of fin3A
to build equations




Proof Sketch:

. Let d[k] be another solution:

Y " d[k] V[ —k] =0 V£ € 2A
kel

» Translate to spatial domain condition: d[k] <> 1(x)

/ n(p-n)ds =0 Vo : supp(p) € 2A
{n=0}
- Show this implies 77 must vanishon {¢ = 0}

and so 77 = psince M i1s minimal.



Current Limitations to Uniqueness Theorem

« Gap between necessary and sufficient # of samples:

3A 1.7A
A
Sufficient Necessary

« Restrictions on geometry of edge sets: non-intersecting

S O¢¥

{pn =0} {p = 0}



Uniqueness of signal (given edge set)

Theorem: If fis PWC* with edge set E = {u = 0}
with © minimal and bandlimited to A then
g = f is the unique solution to
p-Vg=0 st flk]=glk],ker
when the sampling set ' © 3A

*Some geometrical restrictions apply



Uniqueness of signal (given edge set)

Theorem: If fis PWC* with edge set E = {u = 0}
with © minimal and bandlimited to A then
g = f is the unique solution to
p-Vg=0 st flk]=glk],ker
when the sampling set ' © 3A

*Some geometrical restrictions apply

Equivalently,
f = arg mgin |p - Vgll1 s.t. flk] =glk],k €T
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Previously: Two-stage Super-resolution MR
Piecewise Constant Signal Model [O. & Jacob, 2015]

1. Recover edge set 2. Recover amplitudes

Discretize

HR OUTPUT

LR INPUT

Spatial
Domain
Recovery

Off-the-grid On-the-grid



Matrix representation of annihilation

T(f)e=0

2-D convolution matrix

(block Toeplitz)

gridded center
k-space samples

vector of filter coefficients

kyF [K]
— > [c S
e :
| [=7
— :

2(#shifts) x (filter size)



Basis of algorithms:
Annihilation matrix is low-rank

Prop: If the level-set function is bandlimited to A

and the assumed filter support A” O A then
rank[7T(F)] < |N'| — (#shifts A in N')

Fourier domain T eg | NG

Spatial domain p(x,y) —> ejzﬂ(kx+ly)ﬂ(xa y)



Basis of algorithms:
Annihilation matrix is low-rank

Prop: If the level-set function is bandlimited to A

and the assumed filter support A” O A then
rank[T(F)] < |N’| — (#shifts A in A')

Example: k-space
Shepp-Logan

vvvvvvvv
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Assumed filter: 33x25

Samples: 65x49 Rank~ 300



Stage 1: Robust annihilting filter estimation

o (T (F))
1. Compute SVD

3000
2500
- H 2000
T(f) = UV
1000
500

100 200 300 400 500 600 700 800

2. ldentify null space

\
[

\
V= [VS VN]& Vn = [Cla coey Cn]
3. Compute sum-of-squares average

p=|F g+ |F e+ -+ |F el

Recover common zeros



Stage 2: Weighted TV Recovery

f = argmin |- Vgl st flk] = glk],k € T

min E w; -
X - ‘
I

=

v /

(Dx)i| + Al|Ax — b]|?

X = discrete spatial domain image
D = discrete gradient
A = Fourier undersampling operator

b = k-space samples

Edge weights



Recovery of MRI Medical Phantoms

(a) Fully sampled (b) IFFT, SNR=10.8dB (c) TV, SNR=16.6dB (d) Proposed, SNR=21.3dB

(e) Fully sampled (f) IFFT, SNR=19.2dB (g) TV, SNR=19.1dB (h) Proposed, SNR=19.0dB

Analytical phantoms from [Guerquin-Kern, 2012]



Recovery of Real MR Data

(a) Fully-sampled

(d) Edge mask (65x65 coefficients) (¢) TV regularization, SNR=21.0dB () Proposed. SNR=21.1dB

4 Coil SENSE reconstruction w/phase



New Proposed One Stage Algorithm

Jointly estimate edge set and amplitudes

HR OUTPUT

Extrapolate

Fourier data

Off-the-grid



Pose recovery as a one-stage
structured low-rank matrix completion problem

min rank[7(f)] s.t. flk] =b[k],k € T
f |
min IPf — b||2 4+ X|| T (F)|.

J

Data Consistency Regularization penalty

* Entirely off the grid P —

« Extends to CS paradigm

« Use reqularization penalty for other inverse problems
- off-the-grid alternative to TV, HDTV, etc



Fully sampled Zeropadded IFFT TV rank min.

§ .". /
i 1
T 7
w 4
SELAA S NN
b

Fully sampled Undersampled TV k-space rank min k-space

20-fold



Fully sampled Zeropadded IFFT TV rank min.

Fully sampled Undersampled TV k-space rank min k-space

20-fold



Computational challenges

« Naive alg. is slow: ADMM + Singular value thresholding

dim(7°(f)) = (2*window size) x (filter size)

« Use matrix factorization trick:

if rank(X) <'r,

o 2 2
IX[l. = min QUIIF + VIl
|

nxm m X r rxn

« Future work: Exploit convolutional structure.



Summary

« New framework for higher dimensional FRI recovery

— Extend annihilation relation to

Piecewise smooth signal model

« Provide sampling guarantees for unique signal recovery
— 2-D PWC Constant Signals

— New Proof Techniques

* Novel Fourier domain structured low-rank penalty
— Convex, Off-the-Grid, & widely applicable mjn ”T(f) H .
f



